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RESUMO

O aumento das atividades offshore, como plataformas e navios, trazem também a
necessidade do desenvolvimento de atividades para o suporte de novos profissionais ou
mesmo treinamento de profissionais experientes para equipamentos mais modernos. Com
isso, a importância das pesquisas voltadas à construção e evolução de simuladores tem
crescido significantemente. Assim, este projeto tem como objetivo modelar, controlar e
desenvolver um simulador de guindaste para o Tanque de Provas Numérico da Univer-
sidade de São Paulo. O trabalho apresenta um simulador com dinâmica condizente à
realidade, além de estar implementado em conjunto com os recursos visuais e de operação
já presentes no simulador atual.

Palavras-Chave – Simulador de Guindaste, Controle, Modelagem Dinâmica.



ABSTRACT

The increase in offshore activities, such as platforms and ships, also bring the need for
the development of activities to support new professionals or even training of experienced
professionals for more modern equipment. With this, the importance of the research
oriented to the construction and evolution of simulators has grown significantly. Thus, this
project aims to model, control and develop a crane simulator for the Numerical Offshore
Tank of the University of São Paulo. The work presents a simulator with dynamics
consistent with reality, besides being implemented in set with the visual and operating
features already present in the current simulator.

Keywords – Crane Simulator, Control, Dynamic Modeling.
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2.1 Modelagem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Equações de Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Linearização por Série de Taylor . . . . . . . . . . . . . . . . . . . . 17

2.2 Controle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Controlador Proporcional Integral Derivativo . . . . . . . . . . . . . 18

2.2.2 Método de Sintonia – Ziegler & Nichols . . . . . . . . . . . . . . . . 20
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1 INTRODUÇÃO

Os Sistemas Offshore são sistemas cuja instalação e operação acontecem em alto

mar, como por exemplo, plataformas petroĺıferas, navios petroĺıferos ou mesmo grandes

embarcações. Os dois maiores ramos de atividades de sistemas offshore são: Petroĺıferas

e navios de transporte.

(a) Foto aérea de uma plataforma petroĺıfera (b) Foto aérea de um navio petroĺıfero

Figura 1: Instalações petroĺıferas offshore [1]

O comércio de petróleo está, provavelmente, em seu ápice econômico, o que torna o

estudo e desenvolvimento de seus processos um tópico de extrema relevância nos últimos

anos. Estima-se que, cerca de, 7850 plataformas de petróleo estejam em operação no

mundo [5] e com crescimento de 2% ao ano [2] da produção mundial de petróleo, o mercado

de combust́ıveis fósseis ainda mostra que é e será por um longo peŕıodo o pilar na matriz

energética global.

Figura 2: Produção mundial diária de petróleo [2]
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Tanto na produção petroĺıfera, como no transporte de carga em embarcações, a ne-

cessidade da manipulação de “conteiners”, ou mesmo de objetos de grande porte, é muito

significativa, o que torna dentro deste ramo de pesquisa, o desenvolvimento de guindas-

tes embarcados um dos tópicos relevantes neste meio. Os principais tipos de guindaste

presentes na área portuária e de embarcações são [6]:

(a) Guindaste Rotacional (b) Guindaste Bidirecional (c) Guindaste tipo ”boom”

Figura 3: Diferentes Tipos de Guindaste

O guindaste que será abordado neste projeto é o “Boom Crane”, que consiste de uma

estrutura ŕıgida inclinada e um cabo flex́ıvel que suporta a carga. Esta estrutura está em-

barcada em um navio petroĺıfero e é responsável por transportar cargas desta embarcação

para plataformas de petróleo ou portos, ou vice-versa. O operador deste guindaste tem

o controle sob sua inclinação, rotação ou içamento da carga, tendo assim a necessidade

de manipular o objeto com esses comandos. De modo a possibilitar o treinamento de

novos operadores, de qualificar operadores experientes ou mesmo de testar novos equipa-

mentos, o desenvolvimento de simuladores tem se tornado um ramo de pesquisa crescente

em inúmeras áreas. Especificamente para este projeto, o trabalho terá como foco um

simulador desenvolvido no Tanque de Provas Numérico (TPN) da Escola Politécnica da

Universidade de São Paulo, destinado a simulação de guindastes embarcados em navios

de grande porte. A figura 4 mostra um dos ambientes do laboratório [7]:

Figura 4: Cabine do Simulador de Guindaste (SMH-TPN-USP)

Portanto, este projeto tem como objetivo modelar dinamicamente o guindaste presente

no simulador, projetar um controle de modo a melhorar sua performance e deixá-lo mais
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reaĺıstico, e por fim, desenvolver um simulador computacional instalado no simulador de

guindastes e rebocadores presente no TPN para esta dinâmica encontrada.

O design do guindaste é considerado um dos aspectos mais complexos do projeto,

já que apresenta efeitos hidrodinâmicos e respostas dinâmicas diferenciadas de sistemas

terrestres. Tal complexidade vem atrelada a presença da não linearidade de inúmeros

processos no decorrer do trabalho [8].

O presente trabalho está dividido em três partes, a primeira consiste em uma revisão

dos aspectos teóricos necessários para o desenvolvimento da modelagem e do controlador

para o simulador. A segunda parte tange a aplicação dos conceitos teóricos, sendo feito

a simulação da dinâmica do guindaste, o design do controlador e a implementação da

estrutura computacional do simulador. Por fim, dedicamos a terceira e última parte para

as conclusões do trabalho e abrimos espaço para futuros desenvolvimentos.



PARTE I

TEORIA
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2 FUNDAMENTOS TEÓRICOS

2.1 Modelagem

2.1.1 Equações de Lagrange

As equações de Lagrange são equações diferenciais que combinam a conservação do

momento linear com a conservação de energia de um sistema. Tais equações correlacionam

a energia total, cinética mais potencial, com as forças externas, obtendo assim a dinâmica

completa do modelo [9]. A resolução destas equações fornece a trajetória do sistema de

part́ıcula em questão, ou seja, o parâmetro intŕınseco ao seu equacionamento [9].

As equações de Lagrange são expressas por [10]:

δ

δt

(
δL

δq̇i

)
− δL

δqi
= Qi (2.1)

Em que L é a função Lagrangiana, Q as forças generalizadas não conservativas e qi

as coordenadas generalizadas independentes [10]. A função Lagrangiana é definida pela

diferença entre a energia cinética e a potencial, sendo assim expressa por:

L = T − U (2.2)

Onde T é a energia cinética e U a energia potencial. A energia cinética de um corpo

ŕıgido é uma função das coordenadas generalizadas, de suas velocidades e do tempo:

T = T (qi, q̇i, t) (2.3)

E é analiticamente representada por:

T =
1

2
mv2 +

1

2
Iω2 (2.4)



17

Sendo m a massa do corpo, v a velocidade do centro de massa do corpo, I o momento

de inércia sobre o centro de massa do corpo e ω a velocidade angular do corpo [10]. A

energia potencial de um corpo ŕıgido é função das coordenadas generalizadas e do tempo:

U = U(qi, t) (2.5)

Além disso, pode ser obtida pela soma das energias potenciais elásticas e gravitacio-

nais, e é analiticamente representada por:

U =
1

2
kδ2 +mgz (2.6)

Sendo k a constante elástica, δ a deformação elástica a partir da configuração não

deformada, m a massa do corpo, g a aceleração da gravidade e z a altura do centro de

massa do corpo [10]. Com relação as forças generalizadas não conservativas, podemos

interpretá-las como as forças externas aplicadas no corpo na direção de cada coordenada

generalizada, equacionada por:

Q =
n∑
j

→
F ext
j

δ
→
r

δqi
(2.7)

Em que
→
F ext
j são as forças externas e

→
r o vetor direcional.

2.1.2 Linearização por Série de Taylor

A maioria dos sistemas e modelos obtidos a partir do equacionamento dinâmico de

estruturas reais são representados por equações não-lineares. Assim, de modo a simplificar

a resolução numérica sem comprometer o resultado final, ou mesmo, para obter uma gama

maior de métodos de manipulação ou aplicação sob o modelo obtido, lineariza-se o sistema.

A linearização de uma equação diferencial de ordem superior para uma de primeira ordem

pode ser feita por inúmeros métodos, dentre eles, a expansão em Série de Taylor, um dos

mais utilizados. Tal linearização adquire um modelo linearizado em torno de um ponto

de operação, em que, normalmente, tende a ser um ponto de equiĺıbrio do sistema [11].

A expansão em Série de Taylor de uma função não-linear aleatória f(x) é dada por:

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)2 +

f ′′′(x0)

3!
(x− x0)3 + . . . (2.8)
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Sendo x0 o ponto de aplicação.

Para um sistema linear, assume-se que o valor da incógnita x será aproximadamente

igual ao seu valor no ponto de operação x0, logo podemos concluir que a soma dos termos

ordem superior, f (n)(x0)
n!

(x− x0)n, sejam aproximadamente 0. Logo, temos que:

∞∑
j=2

f (n)(x0)

n!
(x− x0)n ≈ 0 (2.9)

Assim, utilizando 2.8 e 2.9 obtemos a função da aproximação de primeira ordem, dita

linearizada:

f(x) ≈ g(x) = f(x0) +
f ′(x0)

1!
(x− x0) (2.10)

Para exemplificar essa aplicação, será apresentado abaixo duas linearizações que serão

utilizadas durante a modelagem do sistema em questão.

sin(x) ≈ sin(x0) +
cos(x0)

1!
(x− x0)

cos(x) ≈ cos(x0)− sin(x0)

1!
(x− x0)

(2.11)

Estas equações produzem uma linearização muito comum em diversas aplicações em

engenharia. Trata-se de que para ângulos pequenos vale:

sin(θ) ≈ θ

cos(θ) ≈ 1
(2.12)

2.2 Controle

2.2.1 Controlador Proporcional Integral Derivativo

O controlador Proporcional Integral Derivativo, PID, trata-se de um método emṕırico

e de fácil implementação, que na maioria dos casos, apresenta um bom desempenho, o

que, concomitantemente ao fator de sua facilidade de projeto, torna-o um artif́ıcio de

ótimo custo benef́ıcio. O esquema de um controlador PID pode ser visto a seguir.
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Figura 5: Diagrama de Blocos PID

A formulação de um controlador PID pode ser dada de duas formas distintas, geral-

mente, sendo elas: a relação entre os sinais de entrada e de sáıda por meio de uma equação

diferencial-integral; ou por meio de sua função transferência, que seria a transformada de

Laplace da equação citada anteriormente. A equação diferencial-integral que representa

a relação entre os sinais de entrada e de sáıda um controlador PID é dada por:

u(t) = Kpe(t) +
Kp

Ti

∫
e(t)dt+KpTd

de(t)

dt
(2.13)

Em que Kp é o ganho proporcional, Ti o fator de ajuste do ganho proporcional para o

integrativo, Td o fator de ajuste do ganho proporcional para o derivativo, e(t) o sinal de

entrada e o u(t) o sinal de sáıda. Aplicando a Transformada de Laplace, temos a função

de transferência do controlador PID, como:

H(s) =
U(s)

E(s)
= Kp[1 +

1

Tis
+ Tds] (2.14)

Sendo H(s) a função transferência do controlador, U(s) a sáıda e E(s) a entrada.

Para obter o controlador PID adequado para o sistema em que deseja aplicá-lo, deve-se

ajustar as constantes Kp, Td e Ti para o conjunto do sistema presente, para que o projeto,

em malha fechada, seja estável e apresente o desempenho desejado pelo usuário. Desse

modo, dois métodos de obtenção dessas constantes se destacam dos demais: Método de

Sintonia de Ziegler & Nichols; e Método do Ciclo Máximo [12].
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2.2.2 Método de Sintonia – Ziegler & Nichols

Este método consiste na aplicação de uma entrada em degrau sob o sistema em malha

aberta, e com relação a resposta do sistema, obtém-se os parâmetros presentes na figura

a seguir.

Figura 6: Resposta do Sistema a uma entrada degrau

Com estes parâmetros obtidos, utiliza-se da tabela a seguir para conseguir as constan-

tes do controlador PID e assim as informações necessárias para sua implementação [12].

Controller Kp Ti Td
P T

L
inf 0

PI 0.9T
L

L
0.3

0
PID 1.2T

L
2L 0.5L

Tabela 1: Parâmetros de Ziegler & Nichols [4]

2.2.3 Método do Ciclo Máximo

Este método consiste em aplicar uma entrada na forma de degrau sob o sistema

em malha fechada, na presença de um controlador proporcional. Feito isso, altera-se a

constante do ganho proporcional de forma a obter o limiar de um sistema oscilante, como

visto na figura a seguir.
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Figura 7: Resposta do Sistema para entrada degrau em limiar de estabilidade [3]

Assim, pode-se obter o ganho no limiar da instabilidade, Kcr, e o peŕıodo de oscilação

do sinal no limite da estabilidade, Pcr. Com estes dois parâmetros, pode-se calcular os

parâmetros do controlador PID para este sistema, a partir da tabela abaixo, e assim obter

o controlador desejado.

Controller Kp Ti Td
P 0.5Ker 0
PI 0.45Ker

1
0.3

0
PID 1.2T

L
2L 0.5Lheight

Tabela 2: Parâmetros do Ciclo Máximo

2.2.4 Compensador de Heave

O controle de Heave tem como objetivo controlar a posição e/ou velocidade de elevação

da carga do guindaste. Assim, como método para obter o controlador temos:

2.2.4.1 Controle de Posição Simples

Para a confecção do controle de posição iniciamos com a hipótese do cabo não ser

flex́ıvel, assim podemos equacionar a dinâmica do cabo como:

l =

∫
l̇dt (2.15)

Ou seja, que o tamanho do cabo é igual a integral da taxa de variação do comprimento

do cabo. Em guindastes é extremamente comum que consigamos atuar diretamente sobre

a taxa de variação, os comandos do cockpit atuam diretamente na velocidade do motor que

por sua vez é diretamente proporcional à velocidade do cabo, logo esta será manipulada
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com o objetivo de controlar a altura da carga em relação à um referencial inercial solidário

à Terra (hipoteticamente inercial).

Assim podemos partir para a função transferência da equação acima, com a velocidade

do cabo como entrada e a dimensão do cabo como sáıda, temos:

G(s) =
L(s)

sL(s)
=

1

s
(2.16)

Obs.: o controlador mais utilizado para um controle simples de posição é um contro-

lador proporcional [13].

2.3 Modelo Dinâmico

O modelo dinâmico que será apresentado refere-se a um guindaste do tipo “Boom

Crane”, muito utilizado em navios e plataformas de petróleo. Sua estrutura é constitúıda

de três motores e dois corpos ŕıgidos. Os motores são responsáveis pela rotação da lança

do guindaste, pela inclinação da lança e pelo içamento da carga, e os dois corpos ŕıgidos

são a estrutura da lança e o cabo de içamento. Tal modelagem pode ser verificada na

figura 8:

Figura 8: Modelo Corpo Rı́gido do Guindaste

Na mesma ilustração, podemos verificar as variáveis presentes no modelo, que podem

ser descritas como:
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• xbase = posição do guindaste no eixo x

• ybase = posição do guindaste no eixo y

• zbase = posição do guindaste no eixo z

• α = ângulo de inclinação do guindaste com relação ao plano xy

• γ = ângulo de rotação do guindaste no eixo z com relação ao eixo x

• L = comprimento da lança do guindaste

• M = massa da lança do guindaste

• xsup =posição da extremidade superior da lança do guindaste no eixo x

• ysup =posição da extremidade superior da lança do guindaste no eixo y

• zsup =posição da extremidade superior da lança do guindaste no eixo z

• β1 = ângulo de posição da carga com relação ao plano xz

• β2 = ângulo de posição da carga com relação ao plano yz

• l = comprimento do cabo de içamento da carga

• m = massa da carga

• g = aceleração da gravidade [g = 9.8m
s2

]

A modelagem da estrutura apresentada anteriormente será realizada de uma forma

direta, ou seja, partindo do ińıcio da estrutura fixa à embarcação até a carga. Sendo

assim, temos inicialmente a base do guindaste fixa à algum local da embarcação, e esta

embarcação apresenta deslocamentos no eixo x, y e z, além de rotações nas componentes

Roll, Pitch, Yaw, devido às forças externas como vento, ondas, correntes, etc. Podemos

verificar tais componentes na figura 9.
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Figura 9: Ângulos de Euler em uma embarcação

sendo

• x = posição da embarcação em x

• y = posição da embarcação em y

• z = posição da embarcação em z

• φ = rotação da embarcação em x (roll)

• θ = rotação da embarcação em y (pitch)

• ψ = rotação da embarcação em z (yaw)

• dx = posição da base do guindaste com relação a embarcação no eixo x

• dy = posição da base do guindaste com relação a embarcação no eixo y

• dz = posição da base do guindaste com relação a embarcação no eixo z

Logo, para determinarmos as coordenadas da base do guindaste com relação a posição da

embarcação, temos de obter a matriz de rotação da embarcação, R. Assim, teŕıamos:


xbase

ybase

zbase

 =


x

y

z

+R


dx

dy

dz

 (2.17)
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com

Rx =


1 0 0

0 cos (θ) − sin (θ)

0 sin (θ) cos (θ)

 (2.18)

Ry =


cos (φ) 0 sin (φ)

0 1 0

− sin (φ) 0 cos (φ)

 (2.19)

Rz =


cos (ψ) − sin (ψ) 0

sin (ψ) cos (ψ) 0

0 0 1

 (2.20)

R = RzRyRx (2.21)

R11 = cosψ cos θ

R12 = cosψ sin θ sinφ− sinψ cosφ

R13 = cosψ sin θ cosφ+ sinψ sinφ

R21 = sinψ cos θ

R22 = sinψ sin θ sinφ+ cosψ cosφ

R23 = sinψ sin θ cosφ− cosψ sinφ

R31 = − sin θ

R32 = cos θ sinφ

R33 = cos θ cosφ

(2.22)

A seguir, com base na mesma equação da posição da base do guindaste, podemos

obter a velocidade do mesmo ponto, derivando a equação no tempo. Assim, temos:


ẋbase

ẏbase

żbase

 =


ẋ

ẏ

ż

+ Ṙ


dx

dy

dz

 (2.23)

Onde Ṙ é a primeira derivada temporal da matriz R.
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Ṙ =


Ṙ11 Ṙ12 Ṙ13

Ṙ21 Ṙ22 Ṙ23

Ṙ31 Ṙ32 Ṙ33

 (2.24)

Ṙ11 = − sinψ cos θψ̇ − cosψ sin θθ̇

Ṙ12 = − sinψ sin θ sinφψ̇ + cosψ cos θ sinφθ̇ + cosψ sin θ cosφφ̇− cosψ cosφψ̇ + sinψ sinφφ̇

Ṙ13 = − sinψ sin θ cosφψ̇ + cosψ cos θ cosφθ̇ − cosψ sin θ sinφφ̇+ cosψ sinφψ̇ + sinψ cosφφ̇

Ṙ21 = cosψ cos θψ̇ − sinψ sin θθ̇

Ṙ22 = cosψ sin θ sinφψ̇ + sinψ cos θ sinφθ̇ + sinψ sin θ cosφφ̇− sinψ cosφψ̇ − cosψ sinφφ̇

Ṙ23 = cosψ sin θ cosφψ̇ + sinψ cos θ cosφθ̇ − sinψ sin θ sinφφ̇+ sinψ sinφψ̇ − cosψ cosφφ̇

Ṙ31 = − cos θθ̇

Ṙ32 = − sin θ sinφθ̇ + cos θ cosφφ̇

Ṙ33 = − sin θ cosφθ̇ − cos θ sinφφ̇

(2.25)

Para finalizar a relação entre a embarcação e a base do guindaste, deriva-se novamente

esta equação, para obter a aceleração no ponto. Tendo assim:


ẍbase

ÿbase

z̈base

 =


ẍ

ÿ

z̈

+ R̈


dx

dy

dz

 (2.26)

em que R̈ é a segunda derivada temporal da matriz R .

R̈ =


R̈11 R̈12 R̈13

R̈21 R̈22 R̈23

R̈31 R̈32 R̈33

 (2.27)
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R̈11 = − cosψ cos θψ̇2 + sinψ sin θψ̇θ̇

− sinψ cos θψ̈ + sinψ sin θψ̇θ̇

− cosψ cos θθ̇2 − cosψ sin θθ̈

R̈12 = − cosψ sin θ sinφψ̇2 − sinψ cos θ sinφψ̇θ̇

− sinψ sin θ cosφψ̇φ̇− sinψ sin θ sinφψ̈

− sinψ cos θ sinφψ̇θ̇ − cosψ sin θ sinφθ̇2

+ cosψ cos θ sinφθ̈ − sinψ sin θ cosφψ̇φ̇

+ 2 cosψ cos θ cosφθ̇φ̇− cosψ sin θ sinφφ̇2

+ cosψ sin θ cosφφ̈+ sinψ cosφψ̇2

+ cosψ sinφψ̇φ̇− cosψ cosφψ̈

+ cosψ sinφψ̇φ̇+ sinψ cosφφ̇2

+ sinψ sinφφ̈

(2.28)

R̈13 = − cosψ sin θ cosφψ̇2

− sinψ cos θ cosφψ̇θ̇ + sinψ sin θ sinφψ̇φ̇

− sinψ sin θ cosφψ̈ − sinψ cos θ cosφψ̇θ̇

− cosψ sin θ cosφθ̇2 − cosψ cos θ sinφθ̇φ̇

+ cosψ cos θ cosφθ̈ + sinψ sin θ sinφψ̇φ̇

− cosψ cos θ sinφθ̇φ̇− cosψ sin θ cosφφ̇2

− cosψ sin θ sinφφ̈− sinψ sinφψ̇2

+ 2 cosψ cosφψ̇φ̇+ cosψ sinφψ̈

− sinψ sinφφ̇2 + sinψ cosφφ̈

R̈21 = − sinψ cos θψ̇2 − cosψ sin θψ̇θ̇

+ cosψ cos θψ̈ − cosψ sin θψ̇θ̇

− sinψ cos θθ̇2 − sinψ sin θθ̈
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R̈22 = − sinψ sin θ sinφψ̇2 + cosψ cos θ sinφψ̇θ̇

+ cosψ sin θ cosφψ̇φ̇+ cosψ sin θ sinφψ̈

+ cosψ cos θ sinφψ̇θ̇ − sinψ sin θ sinφθ̇2

+ sinψ cos θ cosφθ̇φ̇+ sinψ cos θ sinφθ̈

+ cosψ sin θ cosφψ̇φ̇+ sinψ cos θ cosφθ̇φ̇

− sinψ sin θ sinφφ̇2 + sinψ sin θ cosφφ̈

− cosψ cosφψ̇2 + sinψ sinφψ̇φ̇

− sinψ cosφψ̈ + sinψ sinφψ̇φ̇

− cosψ cosφφ̇2 − cosψ sinφφ̈

R̈23 = − sinψ sin θ cosφψ̇2 + cosψ cos θ cosφψ̇θ̇

− cosψ sin θ sinφψ̇φ̇+ cosψ sin θ cosφψ̈

+ cosψ cos θ cosφψ̇θ̇ − sinψ sin θ cosφθ̇2

− sinψ cos θ sinφθ̇φ̇+ sinψ cos θ cosφθ̈

− cosψ sin θ sinφψ̇φ̇− sinψ cos θ sinφθ̇φ̇

− sinψ sin θ cosφφ̇2 − sinψ sin θ sinφφ̈

+ cosψ sinφψ̇2 + sinψ cosφψ̇φ̇

+ sinψ sinφψ̈ + sinψ cosφψ̇φ̇

+ cosψ sinφφ̇2 − cosψ cosφφ̈

R̈31 = sin θθ̇2 − cos θθ̈

R̈32 = − cos θ sinφθ̇2 − 2 sin θ cosφθ̇φ̇

− sin θ sinφθ̈ − cos θ sinφφ̇2

+ cos θ cosφφ̈

R̈33 = − cos θ cosφθ̇2 + 2 sin θ sinφθ̇φ̇

− sin θ cosφθ̈ − cos θ cosφφ̇2

− cos θ sinφφ̈

Em seguida, para obter os dados para posição superior da lança do guindaste lançamos

a hipótese de que a lança comporta-se como um corpo ŕıgido, tendo assim a posição da

parte superior expressa por:
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xsup =xbase + L cos(α + θ) cos(γ + ψ)

ysup =ybase + L cos(α + φ) sin(γ + ψ)

zsup =zbase + L sin(α + φ+ θ)

(2.29)

Para obter a velocidade derivamos as equações acima no tempo, resultando:

ẋsup =ẋbase − L sin(α + θ) cos(γ + ψ)(α̇ + θ̇)− L cos (α + θ) sin (γ + ψ)(γ̇ + ψ̇)

ẏsup =ẏbase − L sin (α + φ) sin (γ + ψ)(α̇ + φ̇) + L cos (α + φ) cos (γ + ψ)(γ̇ + ψ̇)

żsup =żbase + L cos (α + φ+ θ)(α̇ + φ̇+ θ̇)

(2.30)

De maneira semelhante para a aceleração, deriva-se novamente com relação ao tempo.

ẍsup = ẍbase − L sin (α + θ) cos (γ + ψ)(α̈ + θ̈)

− L cos (α + θ) cos (γ + ψ)(α̇ + θ̇)2

+ 2L sin (α + θ) sin (γ + ψ)(α̇ + φ̇)(γ̇ + ψ̇)

− L cos (α + φ) cos (γ + ψ)(γ̇ + ψ̇)2

− L cos (α + φ) sin (γ + ψ)(γ̈ + ψ̈)

(2.31)

ÿsup = ÿbase − L sin (α + φ) sin (γ + ψ)(α̈ + φ̈)

− L cos (α + φ) sin (γ + ψ)(α̇ + θ̇)2

− 2L sin (α + θ) cos (γ + ψ)(α̇ + φ̇)(γ̇ + ψ̇)

− L cos (α + φ) sin (γ + ψ)(γ̇ + ψ̇)2

+ L cos (α + φ) cos (γ + ψ)(γ̈ + ψ̈)

(2.32)

z̈sup = z̈base + L cos (α + φ+ θ)(α̈ + φ̈+ θ̈)

− L sin (α + φ+ θ)(α̇ + φ̇+ θ̇)2
(2.33)

Agora que temos todas as variáveis para a parte superior da lança, iremos obter as

variáveis da carga, sendo a posição expressa por:

xcarga = xsup + l sin β1 cos β2

ycarga = ysup + l cos β1 sin β2

zcarga = zsup − l cos β1 cos β2

(2.34)
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Ao derivar com relação ao tempo, obtém-se a velocidade da carga:

ẋcarga =ẋsup + l cos (β1) cos (β2)β̇1 − l sin (β1) sin (β2)β̇2 + l̇ sin (β1) cos (β2)

ẏcarga =ẏsup − l sin (β1) sin (β2)β̇1 + l cos (β1) cos (β2)β̇2 + l̇ cos (β1) sin (β2)

żcarga =żsup + l sin (β1) cos (β2)β̇1 + l cos (β1) sin (β2)β̇2 − l̇ cos (β1) cos (β2)

(2.35)

Com essas equações pode-se calcular alguns parâmetros da carga, como sua velocidade

total:

Vcarga =
√
ẋ2
carga + ẏ2

carga + ż2
carga (2.36)

E a tração no cabo:

T = m

[
V 2
carga

l
+ g cos (β1) cos (β2)

]
(2.37)

Para finalizar a modelagem estática, expressaremos uma variável externa ao corpo, a

força do vento sob a carga, que será utilizada na modelagem dinâmica do sistema. Nesse

modelo, a força do vento pode ser calculada por [14]:

Fvx = ρCsAxU
2
mx

Fvy = ρCsAyU
2
my

Fvz = ρCsAzU
2
mz

(2.38)

sendo

• Fvx = força do vento em x

• Fvy = força do vento em y

• Fvz = força do vento em z

• ρ = densidade do ar

• Cs = coeficiente de forma

• Ax = área no plano yz

• Ay = área no plano xz
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• Az = área no plano xy

• Umx = velocidade média do vento em x

• Umy = velocidade média do vento em y

• Umz = velocidade média do vento em z

Deve-se lembrar que o valor do fator de forma pode ser utilizado no valor de 1.2 para

números de Reynolds menores que 5.105 [15]. Posteriormente, deve-se obter a dinâmica do

sistema, por meio das equações de Lagrange, de modo a possibilitar o cálculo dos ângulos

da carga. Inicialmente calcula-se as energias cinéticas e potenciais por:

T =Tcarga + Tlança =
1

2
mV 2

carga +
1

6
ML2(α̇2 + γ̇2)

U =Ucarga + Ulança = mgzsup −mgl cos (β1) cos (β2) +
1

2
Mgzsup

(2.39)

Assim, temos como a função Lagrangiana:

L = T−U =
1

2
mV 2

carga+
1

6
ML2(α̇2+γ̇2)−mgzsup+mgl cos (β1) cos (β2)−1

2
Mgzsup (2.40)

Antes de inserir a função Lagrangiana nas equações de Lagrange, iremos definir as

expressões das forças não conservativas:

Qβ1 =Fvx
δx

δβ1

+ Fvy
δy

δβ1

+ Fvz
δz

δβ1

=Fvxl cos (β1) cos (β2)− Fvyl sin (β1) sin (β2) + Fvzl sin (β1) cos (β2)

Qβ2 =Fvx
δx

δβ2

+ Fvy
δy

δβ2

+ Fvz
δz

δβ2

=− Fvxl sin (β1) sin (β2) + Fvyl cos (β1) cos (β2) + Fvzl cos (β1) sin (β2)

(2.41)

Outro passo é lembrar que na equação final, os termos em função dos ângulos da carga

serão linearizados para o caso de ângulos pequenos, ou seja, dado θ, um ângulo pequeno,

assim podemos aproximar

sin (θ) =θ

cos (θ) =1
(2.42)
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Substituindo assim a função Lagrangiana L nas equações de Lagrange dos funda-

mentos teóricos, e realizando as derivadas parciais, além de aplicar algumas propriedades

trigonométricas clássicas, obtemos as equações dinâmicas do guindaste.

m

2
{2ẍsupl cos (β1) cos (β2)− 2ÿsupl sin (β1) sin (β2) + 2z̈supl sin (β1) cos (β2)

+ll̇β̇1(3− cos (2β1) + cos (2β2) + cos (2β1) cos (2β2)) + ll̇β̇2 sin (2β1) sin (2β2)

+l2[
β̇2

1

2
(sin (2β1)− sin (2β1) cos (2β2))

+
β̇2

2

2
(sin (2β1)− sin (2β1) cos (2β2))

−β̇1β̇2(sin (2β2) + cos (2β1) sin (2β2))

+
β̈1

2
(3− cos (2β1) + cos (2β2) + cos (2β1) cos (2β2))

− β̈2

2
sin (2β1) cos (2β2)] + l̇2(sin (2β1)− sin (2β1) cos (2β2))

+
ll̇

2
(sin (2β1)− sin (2β1) cos (2β2)) + 2gl sin (β1) cos (β2)}

=Fvxl cos (β1) cos (β2)− Fvyl sin (β1) sin (β2) + Fvzl sin (β1) cos (β2)

(2.43)

m

2
{−2ẍsupl sin (β1) sin (β2) + 2ÿsupl cos (β1) cos (β2) + 2z̈supl cos (β1) sin (β2)

+ll̇β̇2(3 + cos (2β1)− cos (2β2) + cos (2β1) cos (2β2))− 3ll̇β̇2 sin (2β1) sin (2β2)

+l2[
β̇2

1

2
(sin (2β1)− cos (2β1) sin (2β2))

+
β2

2

2
(sin (2β1)− cos (2β1) sin (2β2))

−β̇1β̇2(sin (2β2) + sin (2β1) cos (2β2))

+
β̈2

2
(3 + cos (2β1)− cos (2β2) + cos (2β1) cos (2β2))

− β̈1

2
sin (2β1) sin (2β2)]− ll̈

2
(sin (2β2)− cos (2β1) sin (2β2))

+2gl cos (β1) sin (β2)}
=− Fvxl sin (β1) sin (β2) + Fvyl cos (β1) cos (β2) + Fvzl cos (β1) sin (β2)

(2.44)

Em seguida aplica-se o processo de linearização de pequenos ângulos para as variáveis

β1 e β2, obtemos:
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m(ẍsup + z̈supβ1 + 2l̇β̇1 − 2lβ̇1β̇2β2 + lβ̈1 + gβ1) = Fvx + Fvzβ1

m(ÿsup + z̈supβ2 + 2l̇β̇2 − 2lβ̇2β̇1β1 + lβ̈2 + gβ2) = Fvy + Fvzβ2

(2.45)

Ao manipular as equações acima, podemos obter as equações dinâmicas finais do

guindaste:

β̈1 =(2β̇2β2 −
2l̇

l
)β̇1 + (

Fvz
ml
− z̈sup

l
− g

l
)β1 +

Fvx
ml
− ẍsup

l

β̈2 =(2β̇1β1 −
2l̇

l
)β̇2 + (

Fvz
ml
− z̈sup

l
− g

l
)β2 +

Fvy
ml
− ÿsup

l

(2.46)



PARTE II

APLICAÇÃO
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3 SIMULAÇÃO DO MODELO DINÂMICO

A simulação do modelo dinâmico será realizada em paralelo com uma validação desse

modelo em comparação com um modelo computacional de guindaste 2D [16] , ou seja,

iremos simular três casos no software e no programa deste projeto (Anexo A), e compará-

los, de modo a demonstrar o comportamento do guindaste e validar o programa feito

neste trabalho. As simulações vão consistir de três casos, sendo eles: movimento periódico

senoidal no eixo x (Sway), movimento periódico senoidal de rotação em torno do eixo x

(roll) e um movimento periódico senoidal no eixo x com peŕıodo próximo a ressonância

do guindaste. Além disso, iremos simular dois programas, sendo eles o modelo dinâmico

completo do sistema e o modelo linearizado, para analisar a performance de cada com

relação à precisão de cada um deles. De modo a ilustrar os movimentos citados acima,

vide figura abaixo.

Figura 10: Modelo Guindaste 2D

3.1 Movimento de Sway

Para validar o modelo com movimento Sway iremos excitar o sistema com uma entrada

de 1 metro e um peŕıodo de 10 segundos. Adquirindo assim, os seguintes resultados para

o software do TPN e para o programa do projeto, respectivamente:
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Figura 11: Ângulo da carga na validação do Sway

Figura 12: Ângulo da carga no modelo não linearizado do Sway

Figura 13: Ângulo da carga no modelo linearizado do Sway

Pode-se obter um erro do modelo com relação ao software, pelos valores extremos de

cada simulação, sendo assim o erro deste teste: 1.20% para o modelo não linearizado e

0.96% para o modelo linearizado.

Outro parâmetro que pode ser comparado, além do ângulo da carga, visto acima, é a

tração no cabo, sendo ela:

Figura 14: Tração no Cabo na validação do Sway
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Figura 15: Tração no Cabo no modelo não linearizado do Sway

Figura 16: Tração no Cabo no modelo linearizado do Sway

Tendo assim, um erro neste quesito, de: -0.48% para ambos os modelos.

3.2 Movimento de Roll

Para validar o modelo com movimento Roll iremos excitar o sistema com uma entrada

de 2 graus e um peŕıodo de 11 segundos. Tendo assim, os seguintes resultados para o

software do TPN e para o programa do projeto, respectivamente:

Figura 17: Ângulo da carga na validação do Roll



38

Figura 18: Ângulo da carga no modelo não linearizado do Roll

Figura 19: Ângulo da carga no modelo linearizado do Roll

Pode-se obter um erro do modelo com relação ao software, pelos valores extremos de

cada simulação, sendo assim o erro deste teste: 4.97% para o modelos não linearizado e

5.83% para o modelo linearizado.

Outro parâmetro que pode ser comparado, além do ângulo da carga, visto acima, é a

tração no cabo, sendo ela:

Figura 20: Tração no cabo na validação do Roll

Figura 21: Tração no cabo no modelo não linearizado do Roll
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Figura 22: Tração no cabo no modelo linearizado do Roll

Tendo assim, um erro neste quesito, de: 2,51% para o modelo não linearizado e 2,37%

para o modelo linearizado.

3.3 Movimento Sway na Ressonância

Para validar o modelo com movimento Sway na ressonância iremos excitar o sistema

com uma entrada de 5 metros e um peŕıodo de 14 segundos. Tendo assim, os seguintes

resultados para o software do TPN e para o programa do projeto, respectivamente:

Figura 23: Ângulo da carga na validação do Sway na ressonância

Figura 24: Ângulo da carga no modelo não linearizado do Sway na ressonância
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Figura 25: Ângulo da carga no modelo linearizado do Sway na ressonância

Pode-se obter um erro do modelo com relação ao software, pelos valores extremos de

cada simulação, sendo assim o erro deste teste: 3.25% para o modelo não linearizado e

154.54% para o modelo linearizado.

Outro parâmetro que pode ser comparado, além do ângulo da carga, visto acima, é a

tração no cabo, sendo ela:

Figura 26: Tração no cabo na validação do Sway na ressonância

Figura 27: Tração no cabo no modelo não linearizado do Sway na ressonância

Figura 28: Tração no cabo no modelo linearizado do Sway na ressonância
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Tendo assim, neste quesito, um erro de: 3,94% para o modelo não linearizado e

317,89% para o modelo linearizado.

Quando comparamos o nosso modelo com o descrito em [16] obtivemos pequenos des-

vios, os erros mostraram-se bastante irrisórios. Mesmo pequenas, houveram diferenças, o

que poderia revelar uma disparidade entre os modelos, todavia ao olharmos mais aten-

tamente o modelo de comparação vemos que este leva em conta aspectos que foram des-

considerados neste trabalho, como por exemplo a dinâmica elástica do cabo do guindaste.

Logo podemos afirmar que os modelos concordam quanto a dinâmica do guindaste.
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4 CONTROLE

4.1 Design do Controlador

Conforme solicitado por integrantes do TPN, o controle que será projetado será um

Compensador de Heave para a posição vertical da carga. Desse modo, iremos testar 4 tipos

de controladores: Proporcional (P), Proporcional Derivativo (PD), Proporcional Integral

(PI) e Proporcional Integral Derivativo (PID). Para este projeto, iremos considerar três

aspectos: a planta do sistema a ser controlada é dada pela equação apresentada na seção

de controle de posição, sendo esta igual a 1
s
, como mostra o diagrama a seguir.

Figura 29: Diagrama de Blocos do Sistema

O tempo de resposta do sistema deve ser de 1 segundo; e o sistema deve apresentar

a maior robustez posśıvel. Com a utilização do toolbox de PID tuner do MATLAB, que

utiliza dos métodos de controle citados na seção do PID no embasamento teórico, obtemos

os seguintes resultados:

• Controlador P: Kp = 2, e sobressinal nulo

• Controlador PD: Kp = 2, Kd = 0, e sobressinal nulo.

• Controlador PI: Kp = 2, Ki = 0.07, e sobressinal nulo

• Controlador PID: Kp = 2, Ki = 0.4084, Kd = 0.1021, e sobressinal de 7%
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Como o controlador PD possui o termo derivativo nulo este será desconsiderado,podendo-

se observar então que há três possibilidades de controladores: P, PI e PID. Como o con-

trolador PID neste caso apresenta sobressinal, que não é algo desejado para o sistema,

iremos descartá-lo. Tendo assim as opções de um controlador P e PI com comportamento

quase idênticos, portanto o controlador que será aplicado como compensador de heave

será um controlador Proporcional com ganho igual a 2, devido a simplicidade ser maior

do que o proporcional integral.

4.2 Resultados do Controlador

Testamos o controlador face a uma referência de um sinal de entrada em degrau,

comparando o resultado obtido com o caso na ausência de controlador.

Figura 30: Comparação entre o modelo com e sem controle

Como pode-se observar, o modelo sem ação do controle (linha rosa) apresenta um

tempo de resposta de cerca de 2 segundos (valor para atingir 86,5% do valor final sem

sobressinal), enquanto isso, com o controlador (linha negra), temos que esse valor cai para

1 segundo, que é o desejado.

Todavia o controlador proposto parte do pressuposto que o modelo é linear, porém

um efeito inerente de qualquer sistema que trabalha com motores é a saturação, uma faixa

de atuação para a velocidade do motor, cujo efeito deve ser levado em conta em nossas

simulações. Na imagem a seguir está ilustrado o diagrama de blocos usado na ferramenta

SIMULINK do MATLAB aplicado ao sistema com a não linearidade descrita.
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Figura 31: Diagrama Simulink do Sistema

Utilizando esta ferramenta, foram feitos testes para entender a performance do con-

trolador face ao que esperamos de perturbações que o sistema pode enfrentar.

Foram feitos testes para uma entrada degrau de amplitude 4, diferentes perturbações

foram simuladas para avaliar o funcionamento do controlador.

Iniciamos com um teste com perturbações com peŕıodos de 2 segundos e amplitude

0.3, que representa uma oscilação de 30cm a cada segundo.

Figura 32: Resultados da Simulação para oscilações de 30cm a cada 2 segundos

Em seguida aumentamos intensidade das oscilações com objetivo de perceber as li-

mitações do sistema. Para tanto aplicamos oscilações de 1m por segundo.
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Figura 33: Resultados da Simulação para oscilações de 1m a cada segundo

Fica assim claro que para condições de operação reais o controlador funciona bem,

como era esperado, o aumento da frequência das oscilações e da amplitude acaba por

instabilizar o sistema. O que é evidente quando olhamos o diagrama de Bode da planta,

para altas frequências o ganho é reduzido.

Figura 34: Diagrama de Bode do Sistema
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5 IMPLEMENTAÇÃO NO SIMULADOR

A implementação do programa no simulador de guindastes do TPN é realizada em

três etapas mais um teste final de validação. A etapas são: integração com o banco de

dados, integração com os equipamentos do operador e integração visual.

Figura 35: Arquitetura de Integração

5.1 Integração com o Banco de Dados

A integração do programa do guindaste com o banco de dados do simulador é feita

via Buzz, um sistema de comunicação, que dá ao projeto o acesso aos dados utilizados

durante a simulação, como informações da embarcação, das ondas, vento, e outros aspectos

do ambiente. Essa integração é responsável por fornecer dados constantes à simulação,

logo um ponto vital para o funcionamento do sistema. O programa funciona basicamente

de forma à conectar a dinâmica do guindaste com o IP do banco de dados e com o IP do

servidor do simulador, desse modo é posśıvel extrair deste banco de dados, as informações

que estão sendo utilizadas na simulação que está em execução no servidor, e assim executar

o programa do guindaste do trabalho.



47

5.2 Integração com equipamentos do operador

A integração do programa do guindaste com os equipamentos do operador é feita via

NMEA, que é um protocolo de comunicação via uma mensagem universal que contém

todas as informações de uma determinada ação concatenadas. Assim, o programa filtra

as informações que deseja saber, como movimentos dos joysticks, e extrai-as para o si-

mulador, de forma a transformar essas informações em efeitos operacionais para o sistema.

5.3 Integração visual

A integração do programa do guindaste com a parte visual também é feita via NMEA,

e consiste basicamente de enviar mensagem classificadas para o sistema de comunicação

global, de modo a possibilitar que o programa do visual consiga extrair tais informações

para atualizar seu estado presente.

A seguir apresentamos algumas imagens para ilustrar o simulador em operação. As

imagens foram captadas na sala Alphacrusis do Simulador Maŕıtimo Hidroviário do Tan-

que de Provas Numérico da Universidade de São Paulo, normalmente, nesta sala são feitas

simulações de embarcações de apoio, por esta razão os cockpit diverge de um guindaste

comum, porém do ponto de vista de implementação estes detalhes são irrelevantes.

Figura 36: Simulador em Operação - Vista Panorâmica
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Figura 37: Arquitetura de Integração - Vista Cockpit



PARTE III

CONCLUSÃO
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6 CONCLUSÃO E FUTUROS TRABALHOS

Ao final da modelagem dinâmica do guindaste, foi realizado um teste de confirmação

do modelo em comparação com um software já existente, e como visto anteriormente,

confirmou-se que o modelo obtido é fidedigno à realidade, reagindo com um comporta-

mento semelhante aos dados fornecido por este software de apoio, sendo isto comprovado

com base na obtenção de erros muito pequenos entre o modelo obtido e o modelo re-

ferência. Além desta modelagem, foi projetado também um controlador de heave que,

caso ativado pelo operador, mantém a carga na altura presente, ou até mesmo em uma al-

tura indicada pelo mesmo. Feito isto, o programa foi integrado ao simulador de guindastes

com sucesso, o que possibilitou testes em campo com o mesmo, e viu-se um comportamento

muito bom com relação a sua dinâmica visual, além de uma parte operacional coerente

e robusta. Como trabalho futuro, seria conveniente dois ramos de desenvolvimento para

o simulador de guindaste: por um lado desenvolver uma interface que possibilite a al-

teração de parâmetros do código fonte em tempo real, como por exemplo a aplicação de

uma carga com massa variável; e por outro lado o projeto de outros controladores que

possam agregar valor ao simulador, como um controlador de Anti-Sway. Outros projetos

de desenvolvimento futuro, como uma interação da dinâmica do guindaste com elementos

externos, como o mar, ou parte do navio, também seriam de extrema relevância para o

projeto.
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ANEXO A

Software de Validação

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Val idat i on Program

%

%

% Authors : J u l i o Arantes and Pedro H. D. S i l v a

% Date : September , 2018

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% System Data %%%%%

L = 70 ;

m = 270000;

g = 10 ;

l = 53 ;

A = 1 ;

T = 10 ;

rho = 1 ;

C = 1 . 2 ;

Ax = 50 ;

Ay = 50 ;

Az = 50 ;
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dx = 0 ;

dy = 0 ;

dz = 0 ;

beta 11 = 0 ;

b e t a 1 1 i = 0 ;

b e t a 1 1 i i = 0 ;

beta 22 = 0 ;

b e t a 2 2 i = 0 ;

b e t a 2 2 i i = 0 ;

alpha = 1.186823891 ;

phi = 0 ;

i n d e x i a l p h a i = 0 ;

i n d e x i p h i i = 0 ;

i n d e x i l i = 0 ;

%%%%%%%% Function f o r %%%%%%%%%%%%

f o r time = 0 : 0 . 1 : 200

%%%%%%%%%%%%%%%% Input %%%%%%%%%%%%

x = A∗ s i n (2∗ pi ∗ time /T) ;

y = 0 ;

z = 0 ;

x i = (2∗ pi ∗A/T)∗ cos (2∗ pi ∗ time /T) ;

y i = 0 ;

z i = 0 ;

x i i = −A∗ ((2∗ pi /T)ˆ2)∗ s i n (2∗ pi ∗ time /T) ;

y i i = 0 ;

z i i = 0 ;

r o l l = 0 ;

p i t ch = 0 ;
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yaw = 0 ;

r o l l i = 0 ;

p i t c h i = 0 ;

yaw i = 0 ;

r o l l i i = 0 ;

p i t c h i i = 0 ;

yaw i i = 0 ;

i n d e x a l p h a i = 0 ;

i n d e x p h i i = 0 ;

i n d e x l i = 0 ;

Vx vento = 0 ;

Vy vento = 0 ;

Vz vento = 0 ;

%%%%%%%%%% Rotat iona l Matrix %%%%%%%%%%%%%

R11 = cos (yaw)∗ cos ( p i t ch ) ;

R12 = cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l ) − s i n (yaw)∗ cos ( r o l l ) ;

R13 = cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l ) + s i n (yaw)∗ s i n ( r o l l ) ;

R21 = s i n (yaw)∗ cos ( p i t ch ) ;

R22 = s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l ) + cos (yaw)∗ cos ( r o l l ) ;

R23 = s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l ) − cos (yaw)∗ s i n ( r o l l ) ;

R31 = −s i n ( p i t ch ) ;

R32 = cos ( p i t ch )∗ s i n ( r o l l ) ;

R33 = cos ( p i t ch )∗ cos ( r o l l ) ;

R = [ R11 R12 R13 ; R21 R22 R23 ; R31 R32 R33 ] ;

%%%%%%%% Crane p o s i t i o n %%%%%%%%%%%%%%%%%%

x base = x + R11∗dx + R12∗dy + R13∗dz ;

y base = y + R21∗dx + R22∗dy + R23∗dz ;

z base = z + R31∗dx + R32∗dy + R33∗dz ;

%%%%% F i r s t Der iva t i ve o f the Rotation Matrix %%%%%%%%%%%%%
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R11 i = − s i n (yaw)∗ cos ( p i t ch )∗ yaw i − cos (yaw)∗ s i n ( p i t ch )∗ p i t c h i ;

R12 i = − s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i + cos (yaw)∗ cos ( p i t ch )

∗ s i n ( r o l l )∗ p i t c h i +cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i

− cos (yaw)∗ cos ( r o l l )∗ yaw i + s i n (yaw)∗ s i n ( r o l l )∗ r o l l i ;

R13 i = − s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i + cos (yaw)∗ cos ( p i t ch )

∗ cos ( r o l l )∗ p i t c h i −cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i

+ cos (yaw)∗ s i n ( r o l l )∗ yaw i + s i n (yaw)∗ cos ( r o l l )∗ r o l l i ;

R21 i = cos (yaw)∗ cos ( p i t ch )∗ yaw i − s i n (yaw)∗ s i n ( p i t ch )∗ p i t c h i ;

R22 i = cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i

+ s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i

+s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i − s i n (yaw)∗ cos ( r o l l )∗ yaw i

− cos (yaw)∗ s i n ( r o l l )∗ r o l l i ;

R23 i = cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i

+ s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i

− s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i

+ s i n (yaw)∗ s i n ( r o l l )∗ yaw i − cos (yaw)∗ cos ( r o l l )∗ r o l l i ;

R31 i = − cos ( p i t ch )∗ p i t c h i ;

R32 i = − s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i

+ cos ( p i t ch )∗ cos ( r o l l )∗ r o l l i ;

R33 i = − s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i

− cos ( p i t ch )∗ s i n ( r o l l )∗ r o l l i ;

R i = [ R11 i R12 i R13 i ;

R21 i R22 i R23 i ;

R31 i R32 i R33 i ] ;

%%%%%%%%% Crane Speed %%%%%%%%%%%%%%

x b a s e i = x i + R11 i∗dx + R12 i∗dy + R13 i∗dz ;

y b a s e i = y i + R21 i∗dx + R22 i∗dy + R23 i∗dz ;

z b a s e i = z i + R31 i∗dx + R32 i∗dy + R33 i∗dz ;

%%% Second Der iva t i ve o f the Rotat iona l Speed %%%%%%%%%

R11 i i = − cos (yaw)∗ cos ( p i t ch )∗ yaw i ˆ2

+ s i n (yaw)∗ s i n ( p i t ch )∗ yaw i∗ p i t c h i



57

− s i n (yaw)∗ cos ( p i t ch )∗ yaw i i + s i n (yaw)∗ s i n ( p i t ch )∗ yaw i∗ p i t c h i

− cos (yaw)∗ cos ( p i t ch )∗ p i t c h i ˆ2 − cos (yaw)∗ s i n ( p i t ch )∗ p i t c h i i ;

R12 i i = − cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i ˆ2

− s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ p i t c h i

− s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ r o l l i

− s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i i

− s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ p i t c h i

− cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ˆ2

+ cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i

+ cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i i

− s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ r o l l i

+ cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i

− cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i ˆ2

+ cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i i

+ s i n (yaw)∗ cos ( r o l l )∗ yaw i ˆ2

+ cos (yaw)∗ s i n ( r o l l )∗ yaw i∗ r o l l i − cos (yaw)∗ cos ( r o l l )∗ yaw i i

+ cos (yaw)∗ s i n ( r o l l )∗ yaw i∗ r o l l i + s i n (yaw)∗ cos ( r o l l )∗ r o l l i ˆ2

+ s i n (yaw)∗ s i n ( r o l l )∗ r o l l i i ;

R13 i i = − cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i ˆ2

− s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ p i t c h i

+ s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ r o l l i

− s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i i

− s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ p i t c h i

− cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ˆ2

− cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i

+ cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i i

+ s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ r o l l i

− cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i

− cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i ˆ2

− cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i i

− s i n (yaw)∗ s i n ( r o l l )∗ yaw i ˆ2

+ cos (yaw)∗ cos ( r o l l )∗ yaw i∗ r o l l i + cos (yaw)∗ s i n ( r o l l )∗ yaw i i

+ cos (yaw)∗ cos ( r o l l )∗ yaw i∗ r o l l i − s i n (yaw)∗ s i n ( r o l l )∗ r o l l i ˆ2

+ s i n (yaw)∗ cos ( r o l l )∗ r o l l i i ;

R21 i i = − s i n (yaw)∗ cos ( p i t ch )∗ yaw i ˆ2

− cos (yaw)∗ s i n ( p i t ch )∗ yaw i∗ p i t c h i
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+ cos (yaw)∗ cos ( p i t ch )∗ yaw i i

− cos (yaw)∗ s i n ( p i t ch )∗ yaw i∗ p i t c h i

− s i n (yaw)∗ cos ( p i t ch )∗ p i t c h i ˆ2

− s i n (yaw)∗ s i n ( p i t ch )∗ p i t c h i i ;

R22 i i = − s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i ˆ2

+ cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ p i t c h i

+ cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ r o l l i

+ cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i i

+ cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ p i t c h i

− s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ˆ2

+ s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i

+ s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i i

+ cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ r o l l i

+ s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i

− s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i ˆ2

+ s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i i

− cos (yaw)∗ cos ( r o l l )∗ yaw i ˆ2

+ s i n (yaw)∗ s i n ( r o l l )∗ yaw i∗ r o l l i − s i n (yaw)∗ cos ( r o l l )∗ yaw i i

+ s i n (yaw)∗ s i n ( r o l l )∗ yaw i∗ r o l l i − cos (yaw)∗ cos ( r o l l )∗ r o l l i ˆ2

− cos (yaw)∗ s i n ( r o l l )∗ r o l l i i ;

R23 i i = − s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i ˆ2

+ cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ p i t c h i

− cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ r o l l i

+ cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i i

+ cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ p i t c h i

− s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ˆ2

− s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i

+ s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i i

− cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ r o l l i

− s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i

− s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i ˆ2

− s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i i

+ cos (yaw)∗ s i n ( r o l l )∗ yaw i ˆ2

+ s i n (yaw)∗ cos ( r o l l )∗ yaw i∗ r o l l i + s i n (yaw)∗ s i n ( r o l l )∗ yaw i i

+ s i n (yaw)∗ cos ( r o l l )∗ yaw i∗ r o l l i + cos (yaw)∗ s i n ( r o l l )∗ r o l l i ˆ2

− cos (yaw)∗ cos ( r o l l )∗ r o l l i i ;
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R31 i i = s i n ( p i t ch )∗ p i t c h i ˆ2 − cos ( p i t ch )∗ p i t c h i i ;

R32 i i = − cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ˆ2

− s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i

− s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i i

− s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i

− cos ( p i t ch )∗ s i n ( r o l l )∗ r o l l i ˆ2

+ cos ( p i t ch )∗ cos ( r o l l )∗ r o l l i i ;

R33 i i = − cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ˆ2

+ s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i

− s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i i

+ s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i

− cos ( p i t ch )∗ cos ( r o l l )∗ r o l l i ˆ2

− cos ( p i t ch )∗ s i n ( r o l l )∗ r o l l i i ;

R i i = [ R11 i i R 1 2 i i R 1 3 i i ;

R21 i i R22 i i R23 i i ;

R31 i i R32 i i R33 i i ] ;

%%%%%%%%% Crane Acce l e r a t i on %%%%%%%%%%%%

x b a s e i i = x i i + R11 i i ∗dx + R12 i i ∗dy + R13 i i ∗dz ;

y b a s e i i = y i i + R21 i i ∗dx + R22 i i ∗dy + R23 i i ∗dz ;

z b a s e i i = z i i + R31 i i ∗dx + R32 i i ∗dy + R33 i i ∗dz ;

%%%%% Alpha , Phi and l speed %%%%%%%%%%%%

a l p h a i = i n d e x a l p h a i ∗ pi /180 ; %1 grau por segundo

p h i i = i n d e x p h i i ∗ pi /30 ; % 6 graus por segundo

l i = i n d e x l i ∗ 0 . 1 ; % 10cm por segundo

%%%%% Update Alpha , Phi and l va lue s %%%%%%%%%

alpha = alpha + a l p h a i ∗ 0 . 1 ;

phi = phi + p h i i ∗ 0 . 1 ;

l = l + l i ∗ 0 . 1 ;
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%%%%% Alpha , Phi and l Acce l e r a t i on %%%%%%%%%

a l p h a i i = ( ( i n d e x a l p h a i − i n d e x i a l p h a i )∗ pi / 1 8 0 ) / 0 . 1 ;

p h i i i = ( ( i n d e x p h i i − i n d e x i p h i i )∗ pi / 3 0 ) / 0 . 1 ;

l i i = ( ( i n d e x l i − i n d e x i l i ) ∗ 0 . 1 ) / 0 . 1 ;

%%%%% Super io r part o f the crane parameters %%%%%%%%%%%

x sup = x base + L∗ cos ( alpha+pi t ch )∗ cos ( phi+yaw ) ;

y sup = y base + L∗ cos ( alpha+r o l l )∗ s i n ( phi+yaw ) ;

z sup = z base + L∗ s i n ( alpha+r o l l+p i t ch ) ;

x s u p i = x b a s e i − L∗ cos ( alpha+pi t ch )∗ s i n ( phi+yaw)

∗( p h i i+yaw i ) − L∗ s i n ( alpha+pi t ch )∗ cos ( phi+yaw)

∗( a l p h a i+p i t c h i ) ;

y s u p i = y b a s e i − L∗ s i n ( alpha+r o l l )∗ s i n ( phi+yaw)

∗( a l p h a i+r o l l i ) + L∗ cos ( alpha+r o l l )∗ cos ( phi+yaw)

∗( p h i i+yaw i ) ;

z s u p i = z b a s e i + L∗ cos ( alpha+r o l l+p i t ch )

∗( a l p h a i+r o l l i+p i t c h i ) ;

x s u p i i = x b a s e i i − L∗ cos ( alpha+pi t ch )∗ cos ( phi+yaw)

∗ ( ( p h i i+yaw i )ˆ2) −L∗ cos ( alpha+pi t ch )

∗ s i n ( phi+yaw )∗ ( p h i i i+yaw i i )

+ 2∗L∗ s i n ( alpha+pi t ch )∗ s i n ( phi+yaw )∗ ( a l p h a i+p i t c h i )

∗( p h i i+yaw i)−L∗ cos ( alpha+pi t ch )∗ cos ( phi+yaw)

∗ ( ( a l p h a i+p i t c h i )ˆ2)−L∗ s i n ( alpha+pi t ch )

∗ cos ( phi+yaw )∗ ( a l p h a i i+p i t c h i i ) ;

y s u p i i = y b a s e i i − L∗ cos ( alpha+r o l l )∗ s i n ( phi+yaw)

∗ ( ( a l p h a i+r o l l i )ˆ2)−L∗ s i n ( alpha+r o l l )

∗ s i n ( phi+yaw )∗ ( a l p h a i i+ r o l l i i )

− 2∗L∗ s i n ( alpha+r o l l )∗ cos ( phi+yaw )∗ ( a l p h a i+r o l l i )

∗( p h i i+yaw i )

− L∗ cos ( alpha+r o l l )∗ s i n ( phi+yaw )∗ ( ( p h i i+yaw i )ˆ2)

+ L∗ cos ( alpha+r o l l )∗ cos ( phi+yaw )∗ ( p h i i i+yaw i i ) ;

z s u p i i = z b a s e i i − L∗ s i n ( alpha+r o l l+p i t ch )
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∗ ( ( a l p h a i+r o l l i+p i t c h i )ˆ2) + L∗ cos ( alpha+r o l l+p i t ch )

∗( a l p h a i i+ r o l l i i +p i t c h i i ) ;

%%%%%%%%%% Wind Force %%%%%%%%%%%%%

Fx vento = rho∗C∗Ax∗( Vx vento ) ˆ 2 ;

Fy vento = rho∗C∗Ay∗( Vy vento ) ˆ 2 ;

Fz vento = rho∗C∗Az∗( Vz vento ) ˆ 2 ;

%%%%%%%%%%% D i f f e r e n t i a l Equations %%%%%%%%%%%%%

A 1 = 2∗ b e t a 2 2 i ∗beta 22 − 2∗ l i / l ;

A 2 = 2∗ b e t a 1 1 i ∗beta 11 − 2∗ l i / l ;

B = Fz vento /(m∗ l ) − z s u p i i / l − g/ l ;

C 1 = Fx vento /(m∗ l ) − x s u p i i / l ;

C 2 = Fy vento /(m∗ l ) − y s u p i i / l ;

tspan = [ time time + 0 . 1 ] ;

beta 10 = [ beta 11 b e t a 1 1 i ] ;

beta 20 = [ beta 22 b e t a 2 2 i ] ;

%%%%%%%%%% Non Linear %%%%%%%%%%%%%%%

[ t 1 , s o l 1 ] = ode45 (@( t , y ) ode fcn b1 ( t , y ,m, l , Fx vento , Fy vento

, Fz vento , x s u p i i , y s u p i i , z s u p i i , l i , g , l i i , beta 22 , be ta 22 i , b e t a 2 2 i i )

, tspan , beta 10 ) ;

[ t 2 , s o l 2 ] = ode45 (@( t , y ) ode fcn b2 ( t , y ,m, l , Fx vento , Fy vento

, Fz vento , x s u p i i , y s u p i i , z s u p i i , l i , g , l i i , beta 11 , be ta 11 i ,

b e t a 1 1 i i ) , tspan , beta 20 ) ;

%%%%%%%%% S o l u t i o n s %%%%%%%%%%%%%%
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a 1 = s i z e ( s o l 1 ) ;

a 2 = s i z e ( s o l 2 ) ;

b1 = s o l 1 ( a 1 ( 1 ) ) ;

b 1 i = s o l 1 (2∗ a 1 ( 1 ) ) ;

b2 = s o l 2 ( a 2 ( 1 ) ) ;

b 2 i = s o l 2 (2∗ a 2 ( 1 ) ) ;

%%%%%%%%%%% Load Data %%%%%%%%%%%%%%

b e t a 1 i i = (2∗ b 2 i ∗b2 − 2∗ l i / l )∗ b 1 i

+ ( Fz vento /(m∗ l ) − z s u p i i / l

− g/ l )∗b1 + Fx vento /(m∗ l )

− x s u p i i / l ;

b e t a 2 i i = (2∗ b 1 i ∗b1 −
2∗ l i / l )∗ b 2 i

+ ( Fz vento /(m∗ l ) − z s u p i i / l

− g/ l )∗b2 + Fy vento /(m∗ l )

− y s u p i i / l ;

x carga = x sup + l ∗ s i n ( b1 )∗ cos ( b2 ) ;

y carga = y sup + l ∗ cos ( b1 )∗ s i n ( b2 ) ;

z ca rga = z sup − l ∗ cos ( b1 )∗ cos ( b2 ) ;

x c a r g a i = x s u p i

+l ∗ cos ( b1 )∗ cos ( b2 )∗ b 1 i

− l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 2 i

+ l i ∗ s i n ( b1 )∗ cos ( b2 ) ;

y c a r g a i = y s u p i

− l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 1 i

+ l ∗ cos ( b1 )∗ cos ( b2 )∗ b 2 i

+ l i ∗ cos ( b1 )∗ s i n ( b2 ) ;

z c a r g a i = z s u p i

+ l ∗ s i n ( b1 )∗ cos ( b2 )∗ b 1 i
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+ l ∗ cos ( b1 )∗ s i n ( b2 )∗ b 2 i

− l i ∗ cos ( b1 )∗ cos ( b2 ) ;

x c a r g a i i = x s u p i i + l i ∗ cos ( b1 )∗ cos ( b2 )∗ b 1 i −
l ∗ s i n ( b1 )∗ cos ( b2 )∗ ( b 1 i ˆ2) − l ∗ cos ( b1 )∗ s i n ( b2 )∗ b 1 i ∗ b 2 i

+ l ∗ cos ( b1 )∗ cos ( b2 )∗ b e t a 1 i i − l i ∗ s i n ( b1 )∗ s i n ( b2 )∗ ( b 2 i ˆ2)

− l ∗ cos ( b1 )∗ s i n ( b2 )∗ b 1 i ∗ b 2 i − l ∗ s i n ( b1 )∗ cos ( b2 )∗ ( b 2 i ˆ2)

− l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b e t a 2 i i + l i ∗ cos ( b1 )∗ cos ( b2 )∗ b 1 i

− l i ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 2 i ;

y c a r g a i i = y s u p i i − l i ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 1 i

− l ∗ cos ( b1 )∗ s i n ( b2 )∗ ( b 1 i ˆ2) − l ∗ s i n ( b1 )∗ cos ( b2 )∗ b 1 i ∗ b 2 i

− l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b e t a 1 i i + l i ∗ cos ( b1 )∗ cos ( b2 )∗ ( b 2 i ˆ2)

− l ∗ s i n ( b1 )∗ cos ( b2 )∗ b 1 i ∗ b 2 i − l ∗ cos ( b1 )∗ s i n ( b2 )∗ ( b 2 i ˆ2)

+ l ∗ cos ( b1 )∗ cos ( b2 )∗ b e t a 2 i i − l i ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 1 i

+ l i ∗ cos ( b1 )∗ cos ( b2 )∗ b 2 i ;

z c a r g a i i = z s u p i i + l i ∗ s i n ( b1 )∗ cos ( b2 )∗ b 1 i

+ l ∗ cos ( b1 )∗ cos ( b2 )∗ ( b 1 i ˆ2) − l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 1 i ∗ b 2 i

+ l ∗ s i n ( b1 )∗ cos ( b2 )∗ b e t a 1 i i − l i ∗ cos ( b1 )∗ s i n ( b2 )∗ ( b 2 i ˆ2)

+ l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 1 i ∗ b 2 i − l ∗ cos ( b1 )∗ cos ( b2 )∗ ( b 2 i ˆ2)

− l ∗ cos ( b1 )∗ s i n ( b2 )∗ b e t a 2 i i − l i ∗ s i n ( b1 )∗ cos ( b2 )∗ b 1 i

− l i ∗ cos ( b1 )∗ s i n ( b2 )∗ b 2 i ;

%%%%%%%%%%%% Load Total Speed %%%%%%%%%%%%%

c a r g a i = ( ( x c a r g a i ˆ2) + ( y c a r g a i ˆ2) + ( z c a r g a i ˆ 2 ) ) ˆ 0 . 5 ;

%%%%%%%%%%%% Cable Tension %%%%%%%%%%%%%%%%

a r e l 1 = ( z s u p i i − z c a r g a i i )∗ cos ( b1 )∗ cos ( b2 )

+ ( y s u p i i − y c a r g a i i )∗ cos ( b1 )∗ s i n ( b2 )

+ ( x s u p i i − x c a r g a i i )∗ s i n ( b1 )∗ cos ( b2 ) ;

a r e l 2 = z s u p i i ∗ cos ( b1 )∗ cos ( b2 )

+ y s u p i i ∗ cos ( b1 )∗ s i n ( b2 )

+ x s u p i i ∗ s i n ( b1 )∗ cos ( b2 ) ;

Tracao = m∗ ( ( ( c a r g a i ˆ2)/ l ) + g∗ cos ( b1 )∗ cos ( b2 ) ) ;
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Tracao 1 = m∗ ( ( ( c a r g a i ˆ2)/ l ) + g∗ cos ( b1 )∗ cos ( b2 ) + a r e l 1 ) ;

Tracao 2 = m∗ ( ( ( c a r g a i ˆ2)/ l ) + g∗ cos ( b1 )∗ cos ( b2 ) + a r e l 2 ) ;

Fx = Tracao∗ s i n ( b1 )∗ cos ( b2 ) ;

Fy = Tracao∗ cos ( b1 )∗ s i n ( b2 ) ;

Fz = −Tracao∗ cos ( b1 )∗ cos ( b2 ) ;

Mx = −Tracao∗ cos ( b1 )∗ cos ( b2 )∗L∗ cos ( alpha )∗ s i n ( phi )

− Tracao∗ cos ( b1 )∗ s i n ( b2 )∗L∗ s i n ( alpha ) ;

My = Tracao∗ cos ( b1 )∗ cos ( b2 )∗L∗ cos ( alpha )∗ cos ( phi )

+ Tracao∗ s i n ( b1 )∗ cos ( b2 )∗L∗ s i n ( alpha ) ;

Mz = Tracao∗ s i n ( b1 )∗ cos ( b2 )∗L∗ cos ( alpha )∗ s i n ( phi )

+ Tracao∗ cos ( b1 )∗ s i n ( b2 )∗L∗ cos ( alpha )∗ cos ( phi ) ;

%%%%%%%%%%%%% Grafs %%%%%%%%%%%%%%%%%

X graf = [ x base x sup ] ;

Y graf = [ y base y sup ] ;

Z g ra f = [ z base z sup ] ;

x g r a f = [ x sup x carga ] ;

y g r a f = [ y sup y carga ] ;

z g r a f = [ z sup z ca rga ] ;

d i sp ( time ) ;

a = 10∗ time + 1 ;

b = uint64 ( a ) ;

angulo 1 (b) = (180/ p i )∗b1 ;

angulo 2 (b) = (180/ p i )∗b2 ;

Forca x (b) = Fx ;

Forca y (b) = Fy ;

Forca z (b) = Fz ;
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Momento x (b) = Mx;

Momento y (b) = My;

Momento z (b) = Mz;

t racao cabo (b) = Tracao ;

t racao cabo 1 (b) = Tracao 1 ;

t racao cabo 2 (b) = Tracao 2 ;

%%%%%%%% Update Values %%%%%%%%%%%%%%%

beta 11 = b1 ;

b e t a 1 1 i = b 1 i ;

b e t a 1 1 i i = b e t a 1 i i ;

beta 22 = b2 ;

b e t a 2 2 i = b 2 i ;

b e t a 2 2 i i = b e t a 2 i i ;

i n d e x i a l p h a i = i n d e x a l p h a i ;

i n d e x i p h i i = i n d e x p h i i ;

i n d e x i l i = i n d e x l i ;

end
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4

1 DESCRIÇÃO DO SOFTWARE

O software do simulador de guindaste consiste em um modelo dinâmico de um pêndulo,

feito em MATLAB, que proporciona um suporte ao Simulador Maŕıtimo Hidroviário da

Universidade de São Paulo, no ramo de simulação de guindastes embarcados em sistemas

Offshore. Este modelo é baseado na estrutura de um guindaste do tipo “Boom Crane”,

que se encontra alocado em uma embarcação. Deste modo, o usuário pode usufruir

da possibilidade de manejar um guindaste com a f́ısica semelhante à realidade, porém

computacionalmente. Com isso, o software tem como objetivo auxiliar o desenvolvimento

de novos profissionais para a área de manejo de cargas portuárias, e também proporcionar

teste de novos equipamentos para situações ainda não testadas em campo.
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2 INFORMAÇÕES TÉCNICAS

O software do guindaste foi projetado para funcionar em um ambiente semelhante

ao Simulador Maŕıtimo Hidroviário da Universidade de São Paulo, logo possui algumas

restrições e requisitos para sua performance. Para que o software possa ser executado

corretamente, o simulador em que o mesmo será instalado deve conter:

• MATLAB 2013b, ou mais recente;

• Conexão MODBUS(BUZZ);

• NMEA;

• Sistema de processamento para UNITY independente;

• Sistema de processamento para Servidor independente;

• Conexão com a internet;

• Conexão com a Skynet
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3 INSTALAÇÃO

A instalação do software do guindaste consiste na alocação de todos os seus programas

para uma mesma pasta do MATLAB. Para isso, basta seguir os seguintes passos:

1. Crie uma pasta em seu computador com o nome que deseja para o software do

guindaste;

2. Insira o PENDRIVE com os arquivos no USB de seu computador;
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3. Copie os programas do PENDRIVE para a pasta criada anteriormente;

4. Inicie o MATLAB;
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5. Encontre a pasta com os programas no diretório do MATLAB;

6. Feito isso, o programa hybrid.m está pronto para a execução.

Obs.: a pasta do MATLAB deve conter os seguintes programas:

• controller.m

• funcao guindaste TPN opt.m

• hybrid.m

• network connection.m

• NMEA get data.m

• nmeaConnect.m

• odefcn.m

• odefcn b1.m

• odefcn b2.m
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4 UTILIZAÇÃO

4.1 Utilização do Técnico

A utilização por parte do técnico deve seguir os seguintes passos:

1. Ligar todos os computadores (servidor, visual e operador);

2. No programa hybrid.m adequar o IP do servidor em que a simulação irá ocorrer (vide

alteração de IP de servidor na seção de alteração de parâmetros do código-fonte);

3. No programa hybrid.m adequar o IP do banco de dados que serão obtidos os dados

para a simulação (vide alteração de IP de banco de dados na seção de alteração de

parâmetros do código-fonte);

4. No programa hybrid.m adequar o ID do navio que ocorrerá a simulação (vide al-

teração de ID da embarcação na seção de alteração de parâmetros do código-fonte);

5. Iniciar todos os processos do simulador no Skynet;

6. Iniciar o programa hybrid.m no MATLAB (vide figura do passo 6 da instalação);
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7. Construir a simulação desejada no computador do servidor (por exemplo Offshore Stavanger11m DP

no Alphacrusis);

8. Começar a simulação.

4.2 Utilização do Operador

Com a simulação iniciada, o operador tem as seguintes opções de atividades:

• Manipulação da rotação do guindaste

O operador tem a capacidade, a partir do movimento de rotação no manete abaixo,

de alterar a velocidade de rotação do guindaste entre 6 graus por segundo no sen-

tido anti-horário, até 6 graus por segundo no sentido horário, como indica a figura

a seguir.
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• Manipulação da inclinação do guindaste

O operador tem a capacidade, a partir do movimento de alavanca do manete abaixo,

de alterar a velocidade de inclinação do guindaste entre 1 grau por segundo para

cima, ou 1 grau por segundo para baixo, como indica a figura a seguir.

• Manipulação do Tamanho do Cabo

O operador tem a capacidade, a partir do movimento de alavanca do manete abaixo,

de alterar a velocidade do cabo do guindaste entre 1 metro por segundo para cima,

ou 1 metro por segundo para baixo, como indica a figura a seguir.

• Ativação do controle de altura da carga O operador tem a capacidade, a partir do

movimento de rotação do comando abaixo, de ligar o controlador de altura da carga,

vermelho, ou de desligar o controlador de altura da carga, no verde, como mostra a

figura abaixo.
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5 ALTERAÇÕES DE PARÂMETRO NO

CÓDIGO-FONTE

5.1 Alteração do ID da Embarcação

Para alterar o ID da embarcação da simulação deve-se ir ao código do programa

hybrid.m, na linha 15, e colocar o ID desejado.

5.2 Alteração do IP do Banco de Dados

Para alterar o IP do banco de dados da simulação deve-se ir ao código do programa

hybrid.m, na linha 18, e inserir o IP do banco de dados desejado.
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5.3 Alteração do IP do Servidor

Para alterar o IP do servidor da simulação deve-se ir ao código do programa hybrid.m,

na linha 21, e inserir o IP do servidor desejado.

5.4 Alteração dos Parâmetros Iniciais da Simulação

Para alterar os parâmetros iniciais da simulação deve-se ir ao código do programa

hybrid.m, nas linhas 58 a 72, e inserir os valores desejados.

Na figura podemos identificar os seguintes parâmetros:

• OnOff: controle de altura da carga em booleano;

• Set i: altura da carga com o controle ligado em metros;

• I: comprimento do cabo em metros;

• alpha: inclinação do guindaste em graus;

• phi: rotação do guindaste em graus;
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• beta 11: ângulo β1 em radianos;

• beta 11 i: velocidade do ângulo β1 em radianos;

• beta 11 ii: aceleração do ângulo β1 em radianos por segundo ao quadrado;

• beta 22: ângulo β2 em radianos;

• beta 22 i: velocidade do ângulo β2 em radianos;

• beta 22 ii: aceleração do ângulo β2 em radianos por segundo ao quadrado;

• index alpha i: velocidade de inclinação do guindaste parametrizada de -1 a 1;

• index l i: velocidade de içamento do cabo parametrizada de -1 a 1;

• Vx wind: velocidade do vento na direção x;

• Vy wind: velocidade do vento na direção y;

• Vz wind: velocidade do vento na direção z;

• time: tempo de simulação em segundos;

• limit: parâmetros de atuação do limite do cabo;

• l limit: limite inferior do tamanho do cabo.

5.5 Alteração dos Parâmetros do Guindaste

Para alterar o valor do comprimento do guindaste e sua localização na embarcação

deve-se ir ao código do programa funcao guindaste TPN opt.m, na linha 79, e inserir o

tamanho desejado, e nas linhas 83 a 85, e inserir a posição do guindaste na embarcação

mais a localização do ińıcio da lança com relação a base do guindaste em cada eixo.
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5.6 Alteração dos Parâmetros da Carga

Para alterar os parâmetros da carga deve-se ir ao código do programa

funcao guindaste TPN opt.m, na linha 89, e inserir a massa da carga, e nas linhas 93 a

95, e inserir as áreas da carga em cada plano.

5.7 Alteração dos Limites de Velocidade do Opera-

dor

Para alterar as velocidades de operação do operador deve-se ir ao código do programa

funcao guindaste TPN opt.m, nas linhas 99 a 101, e inserir os valores das velocidades em

radianos por segundo ou metros por segundo.

Na figura podemos identificar as seguintes velocidades:

• alpha vel: velocidade de inclinação do guindaste;

• phi vel: velocidade de rotação do guindaste;

• l vel: velocidade de içamento do cabo.
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6 CÓDIGOS

6.1 Programa do Controlador(controller.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% C o n t r o l l e r Function

%

%

% Authors : J u l i o Arantes and Pedro H. D. S i l v a

% Date : October , 2018

%

% Input : − s e t ( s e t va lue f o r the measured value )

% − present ( pre sent value o f the measured value )

% − k ( p r op o r t i o na l ga in o f the c o n t r o l l e r )

%

% Output : u ( c o n t r o l l e d input f o r the p lant )

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% Function %%%%%%%%

func t i on u = c o n t r o l l e r ( set , present , k )

%%%% Saturat ion Values %%%

upSat = 1 ; % [m/ s ]

lowSat = −1; % [m/ s ]

%%%% Error Ca l cu l a t i on %%%
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e r r o = s e t − present ;

u = −e r r o ∗ k ;

%%%%%%% Saturat ion %%%%%%%

i f u> upSat

u = upSat ;

e l s e i f u<lowSat

u = lowSat ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.2 Programa da Dinâmica do Guindaste

(funcao guindaste TPN opt.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Crane Dynamics Function

%

%

% Authors : J u l i o Arantes and Pedro H. D. S i l v a

% Date : September , 2018

%

% Input : − time ( time )

% − l ( cab l e l ength )

% − ALPHA ( i n c l i n a t i o n ang le )

% − PHI ( r o t a t i o n ang le )

% − beta 11 ( i n i t i a l va lue f o r Beta 1)

% − b e t a 1 1 i ( i n t i a l va lue f o r Beta 1 f i r s t d e r i v a t i v e )

% − b e t a 1 1 i i ( i n t i a l va lue f o r Beta 1 second d e r i v a t i v e )
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% − beta 22 ( i n i t i a l va lue f o r Beta 2)

% − b e t a 2 2 i ( i n i t i a l va lue f o r Beta 2 f i r s t d e r i v a t i v e )

% − b e t a 2 2 i i ( i n i t i a l va lue f o r Beta 2 second d e r i v a t i v e )

% − x ( Vesse l p o s i t i o n on x−a x i s )

% − y ( Vesse l p o s i t i o n on y−a x i s )

% − z ( Ves se l p o s i t i o n on z−a x i s )

% − x i ( Ves se l v e l o c i t y on x−a x i s )

% − y i ( Ves se l v e l o c i t y on y−a x i s )

% − z i ( Ves se l v e l o c i t y on z−a x i s )

% − x i i ( Ves se l a c c e l e r a t i o n on x−a x i s )

% − y i i ( Ves se l a c c e l e r a t i o n on y−a x i s )

% − z i i ( Ves se l a c c e l e r a t i o n on z−a x i s )

% − ROLL ( Vesse l r o l l ang le )

% − PITCH ( Vesse l p i t ch ang le )

% − YAW ( Vesse l yaw angle )

% − ROLL i ( Ves se l r o l l v e l o c i t y )

% − PITCH i ( Vesse l p i t ch v e l o c i t y )

% − YAW i ( Vesse l yaw v e l o c i t y )

% − ROLL ii ( Ves se l r o l l a c c e l e r a t i o n )

% − PITCH ii ( Ves se l p i t ch a c c e l e r a t i o n )

% − YAW ii ( Ves se l yaw a c c e l e r a t i o n )

% − i n d e x a l p h a i ( alpha v e l o c i t y acqu i red by the JoySt ick )

% − i n d e x p h i i ( phi v e l o c i t y acqu i red by the JoySt ick )

% − i n d e x l i ( cab l e v e l o c i t y acqu i red by the JoySt ick )

% − Vx wind (Wind speed on x−a x i s )

% − Vy wind (Wind speed on y−a x i s )

% − Vz wind (Wind speed on z−a x i s )

%

% Output : − l new (new value f o r the cab l e l ength )

% − alpha new (new value f o r the i n c l i n a t i o n ang le )

% − phi new (new value f o r the r o t a t i o n ang le )

% − beta 111 ( Beta 1 value )

% − b e t a 1 1 1 i ( Beta 1 f i r s t d e r i v a t i v e value )

% − b e t a 1 1 1 i i ( Beta 1 second d e r i v a t i v e value )

% − beta 222 ( Beta 2 value )

% − b e t a 2 2 2 i ( Beta 2 f i r s t d e r i v a t i v e value )
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% − b e t a 2 2 2 i i ( Beta 2 second d e r i v a t i v e value )

% − Tension ( Cable t en s i on )

% − Fx ( React ive f o r c e on the crane base on x−a x i s )

% − Fy ( React ive f o r c e on the crane base on y−a x i s )

% − Fz ( React ive f o r c e on the crane base on z−a x i s )

% − Mx ( React ive moment on the crane base on x−a x i s )

% − My ( r e a c t i v e moment on the crane base on y−a x i s )

% − Mz ( React ive moment on the crane base on z−a z i s )

% − PHI ( phi ang le )

% − ALPHA ( alpha ang le )

% − x l o a d l o c a l z y ( hook p o s i t i o n on crane x−a x i s )

% − y l o a d l o c a l z y ( hook p o s i t i o n on crane y−a x i s )

% − z l o a d l o c a l z y ( hook p o s i t i o n on crane z−a x i s )

% − x i n f l o c a l ( load p o s i t i o n on sh ip x−a x i s )

% − y i n f l o c a l ( load p o s i t i o n on sh ip y−a x i s )

% − z i n f l o c a l ( load p o s i t i o n on sh ip z−a x i s )

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% Function %%%%%%%%

func t i on [ l new , alpha new , phi new , beta 111 , be ta 111 i , b e t a 1 1 1 i i ,

beta 222 , be ta 222 i , b e t a 2 2 2 i i , Tension , Fx , Fy , Fz ,Mx,My,Mz,

x l o a d l o c a l z y , y l o a d l o c a l z y , z l o a d l o c a l z y , x i n f l o c a l ,

y i n f l o c a l , z i n f l o c a l ]

= funcao guindaste TPN opt ( time , l ,ALPHA, PHI , beta 11 , be ta 11 i ,

b e t a 1 1 i i , beta 22 , be ta 22 i , b e t a 2 2 i i , x , y , z , x i , y i , z i , x i i ,

y i i , z i i ,ROLL,PITCH,YAW, ROLL i , PITCH i ,YAW i, ROLL ii , PITCH ii ,

YAW ii , i ndex a lpha i , i n d e x p h i i , i n d e x l i , Vx wind , Vy wind , Vz wind )

%%%%%%%%%%%%%%%%%%%%%% Program Parameters %%%%%%%%%%%%%%%%%%%%%

%%%%%%% Crane Length %%%%%%

L = 4 1 . 4 3 ;
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%%%%% Crane Pos i t i on %%%%%%

dx = 74 .4 + 2 . 5 5 ;

dy = −16.67 + 0 ;

dz = 23 .2 + 3 . 7 ;

%%%%% Load Mass %%%%%%%

m = 270000;

%%%%% Load Area %%%%%%

Ax = 50 ;

Ay = 50 ;

Az = 50 ;

%%%% Operat iona l V e l o c i t i e s %%%%%

a l p h a v e l = pi /180 ;

p h i v e l = pi /30 ;

l v e l = 1 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Angles in rad ians %%%%%%%%%

r o l l = ROLL∗ pi /180 ;

p i t ch = PITCH∗ pi /180 ;

yaw = −YAW∗ pi /180 ;

r o l l i = ROLL i∗ pi /180 ;

p i t c h i = PITCH i∗ pi /180 ;

yaw i = −YAW i∗ pi /180 ;

r o l l i i = ROLL ii∗ pi /180 ;

p i t c h i i = PITCH ii∗ pi /180 ;

yaw i i = −YAW ii∗ pi /180 ;

alpha = ALPHA∗ pi /180 ;
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phi = PHI∗ pi /180 ;

%%%%%% System Parameters %%%%%%%%

g = 9 . 8 ;

rho = 1 ;

C = 1 . 2 ;

%%%%%% I n i t i a l va lue s %%%%%%%%%

i n d e x i a l p h a i = 0 ;

i n d e x i p h i i = 0 ;

i n d e x i l i = 0 ;

%%%%%% Ratation Matrix %%%%%%%%

R11 = cos (yaw)∗ cos ( p i t ch ) ;

R12 = cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l ) − s i n (yaw)∗ cos ( r o l l ) ;

R13 = cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l ) + s i n (yaw)∗ s i n ( r o l l ) ;

R21 = s i n (yaw)∗ cos ( p i t ch ) ;

R22 = s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l ) + cos (yaw)∗ cos ( r o l l ) ;

R23 = s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l ) − cos (yaw)∗ s i n ( r o l l ) ;

R31 = −s i n ( p i t ch ) ;

R32 = cos ( p i t ch )∗ s i n ( r o l l ) ;

R33 = cos ( p i t ch )∗ cos ( r o l l ) ;

R = [ R11 R12 R13 ;

R21 R22 R23 ;

R31 R32 R33 ] ;

x base = x + R11∗dx + R12∗dy + R13∗dz ;

y base = y + R21∗dx + R22∗dy + R23∗dz ;

z base = z + R31∗dx + R32∗dy + R33∗dz ;

%%%% F i r s t d e r i v a t i v e o f Rotation Matrix %%%%%%%%%

88



23

R11 i = − s i n (yaw)∗ cos ( p i t ch )∗ yaw i − cos (yaw)∗ s i n ( p i t ch )∗ p i t c h i ;

R12 i = − s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i +

cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i

+cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i −
cos (yaw)∗ cos ( r o l l )∗ yaw i + s i n (yaw)∗ s i n ( r o l l )∗ r o l l i ;

R13 i = − s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i +

cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i −
cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i +

cos (yaw)∗ s i n ( r o l l )∗ yaw i + s i n (yaw)∗ cos ( r o l l )∗ r o l l i ;

R21 i = cos (yaw)∗ cos ( p i t ch )∗ yaw i −
s i n (yaw)∗ s i n ( p i t ch )∗ p i t c h i ;

R22 i = cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i +

s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i +

s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i −
s i n (yaw)∗ cos ( r o l l )∗ yaw i − cos (yaw)∗ s i n ( r o l l )∗ r o l l i ;

R23 i = cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i +

s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i −
s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i +

s i n (yaw)∗ s i n ( r o l l )∗ yaw i − cos (yaw)∗ cos ( r o l l )∗ r o l l i ;

R31 i = − cos ( p i t ch )∗ p i t c h i ;

R32 i = − s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i +

cos ( p i t ch )∗ cos ( r o l l )∗ r o l l i ;

R33 i = − s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i −
cos ( p i t ch )∗ s i n ( r o l l )∗ r o l l i ;

R i = [ R11 i R12 i R13 i ;

R21 i R22 i R23 i ;

R31 i R32 i R33 i ] ;

x b a s e i = x i + R11 i∗dx + R12 i∗dy + R13 i∗dz ;

y b a s e i = y i + R21 i∗dx + R22 i∗dy + R23 i∗dz ;

z b a s e i = z i + R31 i∗dx + R32 i∗dy + R33 i∗dz ;

%%%%% Second d e r i v a t i v e o f Rotation Matrix %%%%%%%%%%

R11 i i = − cos (yaw)∗ cos ( p i t ch )∗ yaw i ˆ2 +
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s i n (yaw)∗ s i n ( p i t ch )∗ yaw i∗ p i t c h i −
s i n (yaw)∗ cos ( p i t ch )∗ yaw i i +

s i n (yaw)∗ s i n ( p i t ch )∗ yaw i∗ p i t c h i −
cos (yaw)∗ cos ( p i t ch )∗ p i t c h i ˆ2 −
cos (yaw)∗ s i n ( p i t ch )∗ p i t c h i i ;

R12 i i = − cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i ˆ2 −
s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ p i t c h i −
s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ r o l l i −
s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i i −
s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ p i t c h i −
cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ˆ2 +

cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i +

cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i i −
s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ r o l l i +

cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i −
cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i ˆ2 +

cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i i +

s i n (yaw)∗ cos ( r o l l )∗ yaw i ˆ2 +

cos (yaw)∗ s i n ( r o l l )∗ yaw i∗ r o l l i −
cos (yaw)∗ cos ( r o l l )∗ yaw i i +

cos (yaw)∗ s i n ( r o l l )∗ yaw i∗ r o l l i +

s i n (yaw)∗ cos ( r o l l )∗ r o l l i ˆ2 +

s i n (yaw)∗ s i n ( r o l l )∗ r o l l i i ;

R13 i i = − cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i ˆ2 −
s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ p i t c h i +

s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ r o l l i −
s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i i −
s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ p i t c h i −
cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ˆ2 −
cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i +

cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i i +

s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ r o l l i −
cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i −
cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i ˆ2 −
cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i i −
s i n (yaw)∗ s i n ( r o l l )∗ yaw i ˆ2 +
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cos (yaw)∗ cos ( r o l l )∗ yaw i∗ r o l l i +

cos (yaw)∗ s i n ( r o l l )∗ yaw i i +

cos (yaw)∗ cos ( r o l l )∗ yaw i∗ r o l l i −
s i n (yaw)∗ s i n ( r o l l )∗ r o l l i ˆ2 +

s i n (yaw)∗ cos ( r o l l )∗ r o l l i i ;

R21 i i = − s i n (yaw)∗ cos ( p i t ch )∗ yaw i ˆ2 −
cos (yaw)∗ s i n ( p i t ch )∗ yaw i∗ p i t c h i +

cos (yaw)∗ cos ( p i t ch )∗ yaw i i −
cos (yaw)∗ s i n ( p i t ch )∗ yaw i∗ p i t c h i −
s i n (yaw)∗ cos ( p i t ch )∗ p i t c h i ˆ2 −
s i n (yaw)∗ s i n ( p i t ch )∗ p i t c h i i ;

R22 i i = − s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i ˆ2 +

cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ p i t c h i +

cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ r o l l i +

cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i i +

cos (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ p i t c h i −
s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ˆ2 +

s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i +

s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i i +

cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ r o l l i +

s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i −
s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i ˆ2 +

s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i i −
cos (yaw)∗ cos ( r o l l )∗ yaw i ˆ2 +

s i n (yaw)∗ s i n ( r o l l )∗ yaw i∗ r o l l i −
s i n (yaw)∗ cos ( r o l l )∗ yaw i i +

s i n (yaw)∗ s i n ( r o l l )∗ yaw i∗ r o l l i −
cos (yaw)∗ cos ( r o l l )∗ r o l l i ˆ2 −
cos (yaw)∗ s i n ( r o l l )∗ r o l l i i ;

R23 i i = − s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i ˆ2 +

cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ p i t c h i −
cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ r o l l i +

cos (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ yaw i i +

cos (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ yaw i∗ p i t c h i −
s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ˆ2 −
s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i +
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s i n (yaw)∗ cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i i −
cos (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ yaw i∗ r o l l i −
s i n (yaw)∗ cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i −
s i n (yaw)∗ s i n ( p i t ch )∗ cos ( r o l l )∗ r o l l i ˆ2 −
s i n (yaw)∗ s i n ( p i t ch )∗ s i n ( r o l l )∗ r o l l i i +

cos (yaw)∗ s i n ( r o l l )∗ yaw i ˆ2 +

s i n (yaw)∗ cos ( r o l l )∗ yaw i∗ r o l l i +

s i n (yaw)∗ s i n ( r o l l )∗ yaw i i +

s i n (yaw)∗ cos ( r o l l )∗ yaw i∗ r o l l i +

cos (yaw)∗ s i n ( r o l l )∗ r o l l i ˆ2 −
cos (yaw)∗ cos ( r o l l )∗ r o l l i i ;

R31 i i = s i n ( p i t ch )∗ p i t c h i i − cos ( p i t ch )∗ p i t c h i i ;

R32 i i = − cos ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ˆ2 −
s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i −
s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i i −
s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ∗ r o l l i −
cos ( p i t ch )∗ s i n ( r o l l )∗ r o l l i ˆ2 +

cos ( p i t ch )∗ cos ( r o l l )∗ r o l l i i ;

R33 i i = − cos ( p i t ch )∗ cos ( r o l l )∗ p i t c h i ˆ2 +

s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i −
s i n ( p i t ch )∗ cos ( r o l l )∗ p i t c h i i +

s i n ( p i t ch )∗ s i n ( r o l l )∗ p i t c h i ∗ r o l l i −
cos ( p i t ch )∗ cos ( r o l l )∗ r o l l i ˆ2 −
cos ( p i t ch )∗ s i n ( r o l l )∗ r o l l i i ;

R i i = [ R11 i i R12 i i R13 i i ;

R21 i i R22 i i R23 i i ;

R31 i i R32 i i R33 i i ] ;

x b a s e i i = x i i + R11 i i ∗dx + R12 i i ∗dy + R13 i i ∗dz ;

y b a s e i i = y i i + R21 i i ∗dx + R22 i i ∗dy + R23 i i ∗dz ;

z b a s e i i = z i i + R31 i i ∗dx + R32 i i ∗dy + R33 i i ∗dz ;

%%% Rotat ional , i n c l i n a t i o n and c a b l e r l i f t i n g speed %%%%%%%%%%

a l p h a i = i n d e x a l p h a i ∗ a l p h a v e l ;
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p h i i = i n d e x p h i i ∗ p h i v e l ;

l i = i n d e x l i ∗ l v e l ;

%%%% Update ang l e s %%%%%%%

alpha new = alpha + a l p h a i ∗0 . 0 0 5 ;

phi new = phi + p h i i ∗0 . 0 0 5 ;

l new = l + l i ∗0 . 0 0 5 ;

%%%%% Angles a c c e l e r a t i o n %%%%%%%%

a l p h a i i = 0 ;

p h i i i = 0 ;

l i i = 0 ;

%%%%% Crane s u p e r i o r po s i t i on , v e l o c i t y and a c c e l e r a t i o n %%%%%%%%

x sup = x base + L∗ cos ( alpha+pi t ch )∗ cos ( phi+yaw ) ;

y sup = y base + L∗ cos ( alpha+r o l l )∗ s i n ( phi+yaw ) ;

z sup = z base + L∗ s i n ( alpha+r o l l+p i t ch ) ;

x s u p i = x b a s e i − L∗ cos ( alpha+pi t ch )∗ s i n ( phi+yaw )∗ ( p h i i+yaw i ) −
L∗ s i n ( alpha+pi t ch )∗ cos ( phi+yaw )∗ ( a l p h a i+p i t c h i ) ;

y s u p i = y b a s e i −
L∗ s i n ( alpha+r o l l )∗ s i n ( phi+yaw )∗ ( a l p h a i+r o l l i ) +

L∗ cos ( alpha+r o l l )∗ cos ( phi+yaw )∗ ( p h i i+yaw i ) ;

z s u p i = z b a s e i +

L∗ cos ( alpha+r o l l+p i t ch )∗ ( a l p h a i+r o l l i+p i t c h i ) ;

x s u p i i = x b a s e i i −
L∗ cos ( alpha+pi t ch )∗ cos ( phi+yaw )∗ ( ( p h i i+yaw i )ˆ2) −
L∗ cos ( alpha+pi t ch )∗ s i n ( phi+yaw )∗ ( p h i i i+yaw i i ) +

2∗L∗ s i n ( alpha+pi t ch )∗ s i n ( phi+yaw )∗ ( a l p h a i+p i t c h i )

∗( p h i i+yaw i ) −
L∗ cos ( alpha+pi t ch )∗ cos ( phi+yaw )∗ ( ( a l p h a i+p i t c h i )ˆ2) −
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L∗ s i n ( alpha+pi t ch )∗ cos ( phi+yaw )∗ ( a l p h a i i+p i t c h i i ) ;

y s u p i i = y b a s e i i −
L∗ cos ( alpha+r o l l )∗ s i n ( phi+yaw )∗ ( ( a l p h a i+r o l l i )ˆ2) −
L∗ s i n ( alpha+r o l l )∗ s i n ( phi+yaw )∗ ( a l p h a i i+ r o l l i i ) −
2∗L∗ s i n ( alpha+r o l l )∗ cos ( phi+yaw )∗ ( a l p h a i+r o l l i )∗
( p h i i+yaw i ) −
L∗ cos ( alpha+r o l l )∗ s i n ( phi+yaw )∗ ( ( p h i i+yaw i )ˆ2) +

L∗ cos ( alpha+r o l l )∗ cos ( phi+yaw )∗ ( p h i i i+yaw i i ) ;

z s u p i i = z b a s e i i −
L∗ s i n ( alpha+r o l l+p i t ch )∗ ( ( a l p h a i+r o l l i+p i t c h i )ˆ2) +

L∗ cos ( alpha+r o l l+p i t ch )∗ ( a l p h a i i+ r o l l i i +p i t c h i i ) ;

%%%%% Wind speed and f o r c e s %%%%%%%%

Vx = Vx wind∗ s i n (yaw) + Vy wind∗ cos (yaw ) ;

Vy = Vx wind∗ cos (yaw) + Vy wind∗ s i n (yaw ) ;

Vz = Vz wind ;

Fx wind = rho∗C∗Ax∗(Vx) ˆ 2 ;

Fy wind = rho∗C∗Ay∗(Vy) ˆ 2 ;

Fz wind = rho∗C∗Az∗(Vz ) ˆ 2 ;

%%%% D i f f e r e n t i a l equat ions %%%%%%%%%%%%

A 1 = 2∗ b e t a 2 2 i ∗beta 22 − 2∗ l i / l ;

A 2 = 2∗ b e t a 1 1 i ∗beta 11 − 2∗ l i / l ;

B = Fz wind /(m∗ l ) − z s u p i i / l − g/ l ;

C 1 = Fx wind /(m∗ l ) − x s u p i i / l ;

C 2 = Fy wind /(m∗ l ) − y s u p i i / l ;

tspan = [ time time +0 .005 ] ;

beta 10 = [ beta 11 b e t a 1 1 i ] ;

beta 20 = [ beta 22 b e t a 2 2 i ] ;
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%%%% Non−l i n e a r equat iona %%%%%%%

[ t 1 , s o l 1 ] = ode45 (@( t , y ) ode fcn b1 ( t , y ,m, l , Fx wind , Fy wind ,

Fz wind , x s u p i i , y s u p i i , z s u p i i , l i , g , l i i , beta 22 ,

b e ta 22 i , b e t a 2 2 i i ) , tspan , beta 10 ) ;

[ t 2 , s o l 2 ] = ode45 (@( t , y ) ode fcn b2 ( t , y ,m, l , Fx wind , Fy wind ,

Fz wind , x s u p i i , y s u p i i , z s u p i i , l i , g , l i i , beta 11 ,

b e ta 11 i , b e t a 1 1 i i ) , tspan , beta 20 ) ;

%%%% Linea r i z ed equat ions %%%%%%%%%%%

%[ t 1 , s o l 1 ] = ode45 (@( t , y ) odefcn ( t , y , A 1 ,B, C 1 ) , tspan , beta 10 ) ;

%[ t 2 , s o l 2 ] = ode45 (@( t , y ) odefcn ( t , y , A 2 ,B, C 2 ) , tspan , beta 20 ) ;

%%%%% Equation s o l u t i o n s %%%%%%%%%

a 1 = s i z e ( s o l 1 ) ;

a 2 = s i z e ( s o l 2 ) ;

b1 = s o l 1 ( a 1 ( 1 ) ) ;

b 1 i = s o l 1 (2∗ a 1 ( 1 ) ) ;

b2 = s o l 2 ( a 2 ( 1 ) ) ;

b 2 i = s o l 2 (2∗ a 2 ( 1 ) ) ;

%%%%% Load p o s i t i o n %%%%%%%%

b e t a 1 i i = (2∗ b 2 i ∗b2 − 2∗ l i / l )∗ b 1 i +

( Fz wind /(m∗ l ) − z s u p i i / l − g/ l )∗b1 + Fx wind /(m∗ l ) − x s u p i i / l ;

b e t a 2 i i = (2∗ b 1 i ∗b1 − 2∗ l i / l )∗ b 2 i +

( Fz wind /(m∗ l ) − z s u p i i / l − g/ l )∗b2 + Fy wind /(m∗ l ) − y s u p i i / l ;

x load = x sup + l ∗ s i n ( b1 )∗ cos ( b2 ) ;

y load = y sup + l ∗ cos ( b1 )∗ s i n ( b2 ) ;

z l oad = z sup − l ∗ cos ( b1 )∗ cos ( b2 ) ;
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x l o a d i = x s u p i + l ∗ cos ( b1 )∗ cos ( b2 )∗ b 1 i −
l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 2 i + l i ∗ s i n ( b1 )∗ cos ( b2 ) ;

y l o a d i = y s u p i − l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 1 i +

l ∗ cos ( b1 )∗ cos ( b2 )∗ b 2 i + l i ∗ cos ( b1 )∗ s i n ( b2 ) ;

z l o a d i = z s u p i + l ∗ s i n ( b1 )∗ cos ( b2 )∗ b 1 i +

l ∗ cos ( b1 )∗ s i n ( b2 )∗ b 2 i − l i ∗ cos ( b1 )∗ cos ( b2 ) ;

x l o a d i i = x s u p i i +

l i ∗ cos ( b1 )∗ cos ( b2 )∗ b 1 i −
l ∗ s i n ( b1 )∗ cos ( b2 )∗ ( b 1 i ˆ2) −
l ∗ cos ( b1 )∗ s i n ( b2 )∗ b 1 i ∗ b 2 i +

l ∗ cos ( b1 )∗ cos ( b2 )∗ b e t a 1 i i −
l i ∗ s i n ( b1 )∗ s i n ( b2 )∗ ( b 2 i ˆ2) −
l ∗ cos ( b1 )∗ s i n ( b2 )∗ b 1 i ∗ b 2 i −
l ∗ s i n ( b1 )∗ cos ( b2 )∗ ( b 2 i ˆ2) −
l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b e t a 2 i i +

l i ∗ cos ( b1 )∗ cos ( b2 )∗ b 1 i −
l i ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 2 i ;

y l o a d i i = y s u p i i −
l i ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 1 i −
l ∗ cos ( b1 )∗ s i n ( b2 )∗ ( b 1 i ˆ2) −
l ∗ s i n ( b1 )∗ cos ( b2 )∗ b 1 i ∗ b 2 i −
l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b e t a 1 i i +

l i ∗ cos ( b1 )∗ cos ( b2 )∗ ( b 2 i ˆ2) −
l ∗ s i n ( b1 )∗ cos ( b2 )∗ b 1 i ∗ b 2 i −
l ∗ cos ( b1 )∗ s i n ( b2 )∗ ( b 2 i ˆ2) +

l ∗ cos ( b1 )∗ cos ( b2 )∗ b e t a 2 i i −
l i ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 1 i +

l i ∗ cos ( b1 )∗ cos ( b2 )∗ b 2 i ;

z l o a d i i = z s u p i i +

l i ∗ s i n ( b1 )∗ cos ( b2 )∗ b 1 i +

l ∗ cos ( b1 )∗ cos ( b2 )∗ ( b 1 i ˆ2) −
l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 1 i ∗ b 2 i +

l ∗ s i n ( b1 )∗ cos ( b2 )∗ b e t a 1 i i −
l i ∗ cos ( b1 )∗ s i n ( b2 )∗ ( b 2 i ˆ2) +
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l ∗ s i n ( b1 )∗ s i n ( b2 )∗ b 1 i ∗ b 2 i −
l ∗ cos ( b1 )∗ cos ( b2 )∗ ( b 2 i ˆ2) −
l ∗ cos ( b1 )∗ s i n ( b2 )∗ b e t a 2 i i −
l i ∗ s i n ( b1 )∗ cos ( b2 )∗ b 1 i −
l i ∗ cos ( b1 )∗ s i n ( b2 )∗ b 2 i ;

%%%% Load v e l o c i t y %%%%%%%

l o a d i = ( ( x l o a d i ˆ2) + ( y l o a d i ˆ2) + ( z l o a d i ˆ 2 ) ) ˆ 0 . 5 ;

%%%% Cable t en s i on %%%%%%%%

a r e l 1 = ( z s u p i i − z l o a d i i )∗ cos ( b1 )∗ cos ( b2 ) +

( y s u p i i − y l o a d i i )∗ cos ( b1 )∗ s i n ( b2 ) +

( x s u p i i − x l o a d i i )∗ s i n ( b1 )∗ cos ( b2 ) ;

a r e l 2 = z s u p i i ∗ cos ( b1 )∗ cos ( b2 ) +

y s u p i i ∗ cos ( b1 )∗ s i n ( b2 ) + x s u p i i ∗ s i n ( b1 )∗ cos ( b2 ) ;

Tension = m∗ ( ( ( l o a d i ˆ2)/ l ) + g∗ cos ( b1 )∗ cos ( b2 ) ) ;

Tension 1 = m∗ ( ( ( l o a d i ˆ2)/ l ) + g∗ cos ( b1 )∗ cos ( b2 ) +

a r e l 1 ) ;

Tension 2 = m∗ ( ( ( l o a d i ˆ2)/ l ) + g∗ cos ( b1 )∗ cos ( b2 ) +

a r e l 2 ) ;

%%%%% React ive f o r c e s and moments %%%%%%%%

Fx = Tension∗ s i n ( b1 )∗ cos ( b2 ) ;

Fy = Tension∗ cos ( b1 )∗ s i n ( b2 ) ;

Fz = −Tension∗ cos ( b1 )∗ cos ( b2 ) ;

Mx = −Tension∗ cos ( b1 )∗ cos ( b2 )∗L∗ cos ( alpha )∗ s i n ( phi ) −
Tension∗ cos ( b1 )∗ s i n ( b2 )∗L∗ s i n ( alpha ) ;

My = Tension∗ cos ( b1 )∗ cos ( b2 )∗L∗ cos ( alpha )∗ cos ( phi ) +

Tension∗ s i n ( b1 )∗ cos ( b2 )∗L∗ s i n ( alpha ) ;

Mz = Tension∗ s i n ( b1 )∗ cos ( b2 )∗L∗ cos ( alpha )∗ s i n ( phi ) +

Tension∗ cos ( b1 )∗ s i n ( b2 )∗L∗ cos ( alpha )∗ cos ( phi ) ;
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%%%%% Update va lue s %%%%%%

beta 111 = b1 ;

b e t a 1 1 1 i = b 1 i ;

b e t a 1 1 1 i i = b e t a 1 i i ;

beta 222 = b2 ;

b e t a 2 2 2 i = b 2 i ;

b e t a 2 2 2 i i = b e t a 2 i i ;

alpha new = alpha new ∗180/ p i ;

phi new = phi new ∗180/ p i ;

%%%% Global to l o c a l p o s i t i o n s %%%%%%

x s u p l o c a l = L∗ cos ( alpha )∗ cos ( phi ) ;

y s u p l o c a l = L∗ cos ( alpha )∗ s i n ( phi ) ;

z s u p l o c a l = L∗ s i n ( alpha ) ;

x l o a d l o c a l = x s u p l o c a l + l ∗ s i n ( b1+pi t ch )∗ cos(−b2+r o l l ) ;

y l o a d l o c a l = y s u p l o c a l + l ∗ cos ( b1+pi t ch )∗ s i n (−b2+r o l l ) ;

z l o a d l o c a l = z s u p l o c a l − l ∗ cos ( b1+pi t ch )∗ cos(−b2+r o l l ) ;

x i n f l o c a l = dx + x l o a d l o c a l + 2 .55∗ ( cos ( phi )−1);

y i n f l o c a l = dy + y l o a d l o c a l + 2.55∗ s i n ( phi ) ;

z i n f l o c a l = dz + z l o a d l o c a l − 6 . 2 5 ;

x l o a d l o c a l z = cos ( phi )∗ x l o a d l o c a l +

s i n ( phi )∗ y l o a d l o c a l ;

y l o a d l o c a l z = −s i n ( phi )∗ x l o a d l o c a l +

cos ( phi )∗ y l o a d l o c a l ;

z l o a d l o c a l z = z l o a d l o c a l ;

x l o a d l o c a l z y = cos(−alpha )∗ x l o a d l o c a l z −
s i n (−alpha )∗ z l o a d l o c a l z ;

y l o a d l o c a l z y = y l o a d l o c a l z ;
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z l o a d l o c a l z y = s i n (−alpha )∗ x l o a d l o c a l z +

cos(−alpha )∗ z l o a d l o c a l z ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.3 Função Principal do Simulador(hybrid.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Main Program

%

%

% Authors : J u l i o Arantes and Pedro H. D. S i l v a

% Date : October , 2018

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% Program Parameters %%%%%%%%%%%%%%%%%%%%

%%% Vesse l ID %%%

id =4;

%%% Database IP %%%

DB IP = ’mongodb : / / 1 7 2 . 1 6 . 1 1 . 1 0 : 2 7 0 1 7 ’ ;

%%% Server IP %%%

IP = ’ 1 7 2 . 1 6 . 1 1 . 3 2 ’ ;

%%%%%% I n i t i a l va lue s %%%%%%%%%%%

OnOff = 0 ;
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s e t i = 30 ;

l = 30 ;

alpha = 63 ;

phi = 0 ;

beta 11 =0;

b e t a 1 1 i =0;

b e t a 1 1 i i = 0 ;

beta 22 =0;

b e t a 2 2 i =0;

b e t a 2 2 i i = 0 ;

i n d e x a l p h a i = 0 ;

i n d e x p h i i = 0 ;

i n d e x l i = 0 ;

Vx wind = 0 ;

Vy wind = 0 ;

Vz wind = 0 ;

time = 0 ;

l i m i t = 0 ;

l l i m i t = 10 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% Buzz Connection %%%%%%%

try

%%%% I n i c i a l i z a t i o n %%%%%%%

smh . buzz java . i n i t i a l i z e s i m c o ( ) ;

%%%%% Database connect ion %%%%%%%

ds = smh . buzz java . c r e a t e b s o n d a t a s o u r c e (DB IP , ’smh ’ ) ;

%%%% Ses s i on i n i c i a l i z a t i o n %%%%%%

s l = smh . buzz java . c r e a t e b s o n s e r i a l i z e r ( ds ) ;
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g l o b a l s ;

s = smh . buzz java . j o i n s i m c o s e s s i o n ( ’ 12 ’ , s l ) ;

%%%%% Buzz i n i c i a l i z a t i o n %%%%%%%%

s u b s c r i b e r = tpn . i o . BuzzSubscr iber ( s ) ;

hBuzzsubscr iber = handle ( subsc r ibe r , ’ Ca l lbackProper t i e s ’ ) ;

s e t ( hBuzzsubscr iber ,

’ networkConnectionChangedEventCallback ’ ,

@(h , e ) network connect ion (h , e ) ) ;

%%%%% Server connect ion %%%%%%

s . connect ( IP ) ;

%%%%%% Current connect ion s t a t e %%%%%

old = s . g e t c u r r e n t s t a t e ( ) ;

d i sp ( s . g e t c u r r e n t s t a t e ( ) ) ;

%%%% Connection running %%%%%%%%

whi le ( s . g e t c u r r e n t s t a t e ( ) ˜= smh . s t a t e t y p e .RUNNING)

new = s . g e t c u r r e n t s t a t e ( ) ;

i f ˜ strcmp (new , o ld )

d i sp ( s . g e t c u r r e n t s t a t e ( ) ) ;

o ld = new ;

end

end

di sp ( ’ cur r ent s t a t e = ’ )

d i sp ( s . g e t c u r r e n t s t a t e ( ) ) ;

%%%%%%% Getting v e s s e l s %%%%%%%

v = s . g e t v e s s e l s ( ) ;
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%%%%%% Error except i on s %%%%%%%

catch e

d i sp ( ’ Exception : ’ )

d i sp ( e . message )

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% NMEA Conncetion %%%%%%%%%%%%%%%%%%%%%%%%

%%%%% F i l t e r s %%%%%%

f i l t e r C e l l = { ’HLWIN’ ; ’LEVER’ } ;

%%%%% s e r v e r connect ion %%%%%%%%

connHandle = nmeaConnect ( IP , f i l t e r C e l l ) ;

%%%%% NMEA messages %%%%%%%%

whi le ( s . g e t c u r r e n t s t a t e ( ) == smh . s t a t e t y p e .RUNNING)

%%%%% S e l e c t i n g messages %%%%%%%

data = char ( connHandle . get msg ( ) ) ;

[ type , va lue ] = NMEA get data ( data ) ;

i f ( strcmp ( type , ’ cable ’ ) )

i n d e x l i = value ;

e l s e i f ( strcmp ( type , ’ i n c l i n a t i o n ’ ) )

i n d e x a l p h a i = value ;

e l s e i f ( strcmp ( type , ’ r o ta t i on ’ ) )

i n d e x p h i i = value ;

e l s e i f ( strcmp ( type , ’ cont ro l ’ ) )

i f ( va lue >= 0)

OnOff = 1 ;
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e l s e

OnOff = 0 ;

end

e l s e i f ( strcmp ( type , ’ wind ’ ) )

Vx wind = value ( 1 ) ;

Vy wind = value ( 2 ) ;

Vz wind = value ( 3 ) ;

end

%%%%%%%%% Create ob j e c t v e s s e l %%%%%%%%%

f o r i = 0 : v . s i z e ()−1

ves = v . get ( i ) ;

ID = st r2doub l e ( ves . g e t i d ( ) ) ;

i f ( ID == id )

break

end

end

%%%%%%% Update v e s s e l %%%%%%%%

s . sync ( ves ) ;

%%%%%%% GET BUZZ POSITION %%%%%%%%

%%%%% Linear Sta t e s %%%%%%%%%%

x = ves . g e t l i n e a r p o s i t i o n ( ) . get ( 0 ) ;

y = ves . g e t l i n e a r p o s i t i o n ( ) . get ( 1 ) ;

z = ves . g e t l i n e a r p o s i t i o n ( ) . get ( 2 ) ;

x i = ves . g e t l i n e a r v e l o c i t y ( ) . get ( 0 ) ;

y i = ves . g e t l i n e a r v e l o c i t y ( ) . get ( 1 ) ;

z i = ves . g e t l i n e a r v e l o c i t y ( ) . get ( 2 ) ;

x i i = ves . g e t l i n e a r a c c e l e r a t i o n ( ) . get ( 0 ) ;

y i i = ves . g e t l i n e a r a c c e l e r a t i o n ( ) . get ( 1 ) ;

z i i = ves . g e t l i n e a r a c c e l e r a t i o n ( ) . get ( 2 ) ;

103



38

%%%%%% Angular s t a t e s %%%%%%

r o l l = ves . g e t a n g u l a r p o s i t i o n ( ) . get ( 0 ) ;

p i t ch = ves . g e t a n g u l a r p o s i t i o n ( ) . get ( 1 ) ;

yaw = ves . g e t a n g u l a r p o s i t i o n ( ) . get ( 2 ) ;

r o l l i = ves . g e t a n g u l a r v e l o c i t y ( ) . get ( 0 ) ;

p i t c h i = ves . g e t a n g u l a r v e l o c i t y ( ) . get ( 1 ) ;

yaw i = ves . g e t a n g u l a r v e l o c i t y ( ) . get ( 2 ) ;

r o l l i i = ves . g e t a n g u l a r a c c e l e r a t i o n ( ) . get ( 0 ) ;

p i t c h i i = ves . g e t a n g u l a r a c c e l e r a t i o n ( ) . get ( 1 ) ;

yaw i i = ves . g e t a n g u l a r a c c e l e r a t i o n ( ) . get ( 2 ) ;

%%%%%% Time %%%%%%%

t i m e c i c l e = s . g e t c u r r e n t t i m e s t e p ( ) ;

t ime increment = s . g e t cu r r en t t ime i nc r eme n t ( ) ;

%%%%%%% Crane %%%%%

[ l new , alpha new , phi new , beta 111 , be ta 111 i ,

b e t a 1 1 1 i i , beta 222 , be ta 222 i , b e t a 2 2 2 i i ,

Tension , Fx , Fy , Fz ,Mx,My,Mz, x load , y load ,

z load , x i n f , y i n f , z i n f ]

=funcao guindaste TPN opt ( time , l , alpha , phi ,

beta 11 , be ta 11 i , b e t a 1 1 i i , beta 22 ,

b e ta 22 i , b e t a 2 2 i i , x , y , z , x i , y i , z i , x i i ,

y i i , z i i , r o l l , p i tch , yaw ,

r o l l i , p i t c h i , yaw i , r o l l i i , p i t c h i i ,

yaw i i , i ndex a lpha i , i n d e x p h i i ,

i n d e x l i , Vx wind , Vy wind , Vz wind ) ;

%%%%%%%%%% Control %%%%%%%%%%%%%

i f OnOff == 1

i n d e x l i = c o n t r o l l e r ( s e t i , z i n f , 2 ) ;
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e l s e

s e t i = z i n f ;

end

%%%%%%%% Cable l i m i t a t i o n %%%%%%%%

i f ( l new <= l l i m i t )

l new = l l i m i t ;

end

%%%%%% Update va lues %%%%%%%%

beta 11=beta 111 ;

b e t a 1 1 i=b e t a 1 1 1 i ;

b e t a 1 1 i i=b e t a 1 1 1 i i ;

beta 22=beta 222 ;

b e t a 2 2 i=b e t a 2 2 2 i ;

b e t a 2 2 i i=b e t a 2 2 2 i i ;

l = l new ;

phi = phi new ;

alpha = alpha new ;

time = time + 0 . 0 0 5 ;

%%%%% Send NMEA messages %%%%%%%%

msg 1 = [ ’HLCJT, 1 0 0 1 , 0 , ’ , num2str ( x load ) , ’ , ’ ,

num2str ( y load ) , ’ , ’ , num2str ( z l oad ) , ’ , 0 , ’

, num2str ( alpha ) , ’ , 0 ’ ] ;

msg 2 = [ ’HLCJT, 1 0 0 1 , 1 , 2 . 5 5 , 0 , 3 . 7 , 0 , ’ , num2str(−alpha ) ,

’ , 0 ’ ] ;

msg 3 = [ ’HLCJT,1001 , 2 , 74 . 4 , −16 . 67 , 23 . 2 , 0 , 0 , ’ , num2str ( phi ) ] ;

connHandle . set msg ( msg 1 ) ;

connHandle . set msg ( msg 2 ) ;

connHandle . set msg ( msg 3 ) ;

msg = [ ’HLCOT, 1 , ’ , num2str ( x i n f ) , ’ , ’ ,
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num2str ( y i n f ) , ’ , ’ , num2str ( z i n f ) , ’ , 0 , 0 , 0 ’ ] ;

connHandle . set msg (msg ) ;

msg force = [ ’XFORC, 4 , 1 1 1 , ’ , num2str (Fx ) , ’ , ’ , num2str (Fy ) , ’ , ’ ,

num2str ( Fz ) , ’ , ’ , num2str (Mx) , ’ , ’ , num2str (My) , ’ , ’ ,

num2str (Mz) , ’ , 7 6 . 95 , −16 . 67 , 26 . 9 , ’ ,

num2str ( t i m e c i c l e ) , ’ , ’ , num2str ( t ime increment ) ] ;

connHandle . set msg ( msg force ) ;

msg tens ion =

[ ’CRINF,1001 , Tension , ’ , num2str ( Tension ) ] ;

connHandle . set msg ( msg tens ion ) ;

end

%%%%% Disconnect connect ion and s e s s i o n %%%%%%%%

s . d i s connec t ( ) ; % Desconectar c o n e x o

pause ( 1 ) ;

s u b s c r i b e r . terminate ( s )

s . terminate ( )

c l e a r ( s )

smh . buzz java . te rminate s imco ( ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.4 Função de Conexão à Rede(network connection.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Network Connection Function

%

%

% Authors : J u l i o Arantes and Pedro H. D. S i l v a

% Date : September , 2018

%

% Input :

%
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% Output : Display ( Provides connect ion s t a t u s |
% Connected or Disconnected )

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Function %%%%%

func t i on [ ] = network connect ion ( hObject , ev )

%%% Connection Var iab le %%%

g l o b a l s ;

%%%% Connection Status %%%

i f s . i s c o n n e c t e d ( )

d i sp ( ’ Connected !\n ’ )

e l s e

d i sp ( ’ Disconnected !\n ’ )

end

%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.5 Função de Obtenção de Dados do NMEA

(nmea get data.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% NMEA Data C o l l e c t i o n Function

%

%

% Authors : J u l i o Arantes and Pedro H. D. S i l v a

% Date : October , 2018
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%

% Input : − s e t ( s e t va lue f o r the measured value )

% − present ( pre sent value o f the measured value )

%

% Output : − type ( type o f the message )

% − value ( number a s s o c i a t e d with type )

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Function %%%%%%

func t i on [ type , va lue ] = NMEA get data ( data )

%%%%% S p l i t Message %%%%

sp l i tData = s t r s p l i t 2 ( data , ’ , ’ ) ;

%%%%%% I d e n t i f y Message %%%%%%%

switch sp l i tData {1}

%%%%%% Wind Data %%%%%%%%%%%%%%

case ’HLWIN’

type = ’ wind ’ ;

va lue = [ s t r2doub l e ( sp l i tData ( 2 ) )

s t r2doub l e ( sp l i tData ( 3 ) ) s t r2doub l e ( sp l i tData ( 4 ) ) ] ;

%%%%%%% Cable Data %%%%%%%%%%%

case ’LEVER’

i f ( strcmp ( sp l i tData ( 2 ) , ’ c rane 1001 hook he ight ’ ) )

type = ’ cable ’ ;

e l s e i f ( strcmp ( sp l i tData ( 2 ) , ’ crane 1001 yaw ’ ) )
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type = ’ ro ta t i on ’ ;

e l s e i f ( strcmp ( sp l i tData ( 2 ) , ’ c rane 1001 p i t ch ’ ) )

type = ’ i n c l i n a t i o n ’ ;

e l s e i f ( strcmp ( sp l i tData ( 2 ) , ’ c rane 1001 auto heave ’ ) )

type = ’ cont ro l ’ ;

e l s e

type = ’Unknown ’ ;

end

value = st r2doub l e ( sp l i tData ( 3 ) ) ;

%%%%%%% Unknown Message %%%%%%%%%%

otherwi se

type = ’Unknown ’ ;

va lue = 0 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.6 Função de Conexão do NMEA(nmeaConnect.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% NMEA Connection Function

%

%

% Authors : J u l i o Arantes and Pedro H. D. S i l v a ( adapted from SMH POLI USP)

% Date : September , 2018

109



44

%

% Input : − IP Adress ( S e r v e r s IP Adress )

% − vararg in (NMEA c l a s s i f i c a t i o n f i l t e r s )

%

% Output : connHandle (NMEA connect ion )

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% Function %%%%%%%%%%%%

func t i on connHandle = nmeaConnect ( ipAddress , va ra rg in )

% nmeaConnect ( ipAddress , f i l t e r C e l l ) : Connects to an NMEA chat s e r v e r

% addressed by ipAddress and adds f i l t e r s to i t de f i ned by c e l l array

% f i l t e r C e l l

%%%%% Create de connect ion Handle %%%%%

connHandle = nmea . nmea c l i ent ;

%%% Connects to the chat s e r v e r addres %%%

connHandle . connect ( ipAddress ) ;

%%%% I f the re are f i l t e r s , adds i t to the handle %%%

i f ˜ isempty ( vara rg in )

f i l t e r C e l l = vararg in {1} ;

f o r k = 1 : l ength ( f i l t e r C e l l )

connHandle . a d d f i l t e r ( f i l t e r C e l l {k } ) ;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.7 Função das Equações Diferenciais Linearizadas

(odefcn.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Linea r i z ed D i f f e r e n t i a l Equation Function

%

% Authors : J u l i o Arantes and Pedro H. D. S i l v a

% Date : October , 2018

%

% Input : − t ( time )

% − y ( d i f f e r e n t i a l equat ion v a r i a b l e )

% − A

% − B

% − C

%

% Output : dydt ( s o l u t i o n o f the d i f f e r e n t i a l equat ion )

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% Function %%%%%%

func t i on dydt = odefcn ( t , y ,A,B,C)

%%%%% I n i t i a l Values %%%%%%%

dydt = ze ro s ( 2 , 1 ) ;

%%%%% D i f e r e n t i a l Equations %%%%%%%

dydt (1 ) = y ( 2 ) ;

dydt (2 ) = A∗y (2 ) + B∗y (1 ) + C;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.8 Função das Equações Diferenciais de β1

(odefcn b1.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% D i f f e r e n t i a l Equation f o r Beta 1 Function

%

%

% Authors : J u l i o Arantes and Pedro H. D. S i l v a

% Date : October , 2018

%

% Input : − t ( time )

% − y ( d i f f e r e n t i a l equat ion v a r i a b l e )

% − m ( load mass )

% − l ( cab l e l ength )

% − Fx wind ( wind f o r c e on x−a x i s )

% − Fy wind ( wind f o r c e on y−a x i s )

% − Fz wind ( wind f o r c e on z−a x i s )

% − x s u p i i ( a c c e l e r a t i o n at the top o f the crane on x−a x i s )

% − y s u p i i ( a c c e l e r a t i o n at the top o f the crane on y−a x i s )

% − z s u p i i ( a c c e l e r a t i o n at the top o f the crane on z−a x i s )

% − l i ( cab l e l i f t i n g speed )

% − g ( a c c e l e r a t i o n o f g rav i ty )

% − l i i ( cabk le l i f t i n g a c c e l e r a t i o n )

% − beta 22 ( Beta 2 value )

% − b e t a 2 2 i ( Beta 2 f i r s t d e r i v a t i v e value )

% − b e t a 2 2 i i ( Beta 2 second d e r i v a t i v e value )

%

% Output : dydt ( s o l u t i o n o f the d i f f e r e n t i a l equat ion )

%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% Function %%%%%%%

func t i on dydt = odefcn b1 ( t , y ,m, l , Fx vento , Fy vento , Fz vento , x s u p i i ,

y s u p i i , z s u p i i , l i , g , l i i , beta 22 , be ta 22 i , b e t a 2 2 i i )

%%%%% I n i t i a l Values %%%%%%%

dydt = ze ro s ( 2 , 1 ) ;

%%%%% D i f e r e n t i a l Equations %%%%%%%

dydt (1 ) = y ( 2 ) ;

dydt (2 ) = ( ( ( 4∗ Fx vento∗ cos ( y (1 ) )∗ cos ( beta 22 ) )/m∗ l ) −
( (4∗ Fy vento∗ s i n ( y (1 ) )∗ s i n ( beta 22 ) )/m∗ l ) +

((4∗ Fz vento∗ s i n ( y (1 ) )∗ cos ( beta 22 ) )/m∗ l ) −
( (4∗ x s u p i i ∗ cos ( y (1 ) )∗ cos ( beta 22 ) )/ l ) +

((4∗ y s u p i i ∗ s i n ( y (1 ) )∗ s i n ( beta 22 ) )/ l ) −
( (4∗ z s u p i i ∗ s i n ( y (1 ) )∗ cos ( beta 22 ) )/ l ) −
(2∗ l i ∗y (2)/ l )∗ (3 − cos (2∗y ( 1 ) ) + cos (2∗ beta 22 ) +

cos (2∗y (1 ) )∗ cos (2∗ beta 22 ) ) −
(6∗ l i ∗ b e t a 2 2 i / l )∗ s i n (2∗y (1 ) )∗ s i n (2∗ beta 22 ) −
( y (2 )ˆ2 )∗ ( s i n (2∗y ( 1 ) ) − s i n (2∗y (1 ) )∗ cos (2∗ beta 22 ) ) −
( b e t a 2 2 i ˆ2)∗ ( s i n (2∗y ( 1 ) ) −
s i n (2∗y (1 ) )∗ cos (2∗ beta 22 ) ) +

2∗y (2)∗ b e t a 2 2 i ∗( s i n (2∗ beta 22 ) +

cos (2∗y (1 ) )∗ s i n (2∗ beta 22 ) ) +

( b e t a 2 2 i i ˆ2)∗ s i n (2∗y (1 ) )∗ s i n (2∗ beta 22 ) −
(2∗ ( l i ˆ2)/( l ˆ2 ) )∗ ( s i n (2∗y ( 1 ) ) −
s i n (2∗y (1 ) )∗ cos (2∗ beta 22 ) ) − (2∗ l i i / l )∗ ( s i n (2∗y ( 1 ) ) −
s i n (2∗y (1 ) )∗ cos (2∗ beta 22 ) ) −
(4∗ g/ l )∗ s i n ( y (1 ) )∗ cos ( beta 22 ) ) / ( 3 − cos (2∗y ( 1 ) ) +

cos (2∗ beta 22 ) + cos (2∗y (1 ) )∗ cos (2∗ beta 22 ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

113



48

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.9 Função das Equações Diferenciais de β2

(odefcn b2.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% D i f f e r e n t i a l Equation f o r Beta 2 Function

%

%

% Authors : J u l i o Arantes and Pedro H. D. S i l v a

% Date : October , 2018

%

% Input : − t ( time )

% − y ( d i f f e r e n t i a l equat ion v a r i a b l e )

% − m ( load mass )

% − l ( cab l e l ength )

% − Fx wind ( wind f o r c e on x−a x i s )

% − Fy wind ( wind f o r c e on y−a x i s )

% − Fz wind ( wind f o r c e on z−a x i s )

% − x s u p i i ( a c c e l e r a t i o n at the top o f the crane on x−a x i s )

% − y s u p i i ( a c c e l e r a t i o n at the top o f the crane on y−a x i s )

% − z s u p i i ( a c c e l e r a t i o n at the top o f the crane on z−a x i s )

% − l i ( cab l e l i f t i n g speed )

% − g ( a c c e l e r a t i o n o f g rav i ty )

% − l i i ( cabk le l i f t i n g a c c e l e r a t i o n )

% − beta 11 ( Beta 1 value )

% − b e t a 1 1 i ( Beta 1 f i r s t d e r i v a t i v e value )

% − b e t a 1 1 i i ( Beta 1 second d e r i v a t i v e value )

%

% Output : dydt ( s o l u t i o n o f the d i f f e r e n t i a l equat ion )

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

114



49

%%%%% Function %%%%%%

func t i on dydt = odefcn b2 ( t , y ,m, l , Fx vento , Fy vento , Fz vento , x s u p i i ,

y s u p i i , z s u p i i , l i , g , l i i , beta 11 , be ta 11 i , b e t a 1 1 i i )

%%%% I n i t i a l Values %%%%%

dydt = ze ro s ( 2 , 1 ) ;

%%%% D i f f e r e n t i a l Equations %%%%%%%

dydt (1 ) = y ( 2 ) ;

dydt (2 ) = (((−4∗Fx vento∗ s i n ( beta 11 )∗ s i n ( y ( 1 ) ) ) /m∗ l ) +

((4∗ Fy vento∗ cos ( beta 11 )∗ cos ( y ( 1 ) ) ) /m∗ l ) +

((4∗ Fz vento∗ cos ( beta 11 )∗ s i n ( y ( 1 ) ) ) /m∗ l ) +

((4∗ x s u p i i ∗ s i n ( beta 11 )∗ s i n ( y ( 1 ) ) ) / l ) −
( (4∗ y s u p i i ∗ cos ( beta 11 )∗ cos ( y ( 1 ) ) ) / l ) −
( (4∗ z s u p i i ∗ cos ( beta 11 )∗ s i n ( y ( 1 ) ) ) / l ) −
(2∗ l i ∗y (2)/ l )∗ (3 + cos (2∗ beta 11 ) − cos (2∗y ( 1 ) ) +

cos (2∗ beta 11 )∗ cos (2∗y ( 1 ) ) ) −
(6∗ l i ∗ b e t a 1 1 i / l )∗ s i n (2∗ beta 11 )∗ s i n (2∗y ( 1 ) ) −
( b e t a 1 1 i ˆ2)∗ ( s i n (2∗y ( 1 ) ) −
cos (2∗ beta 11 )∗ s i n (2∗y ( 1 ) ) ) − ( y (2 )ˆ2 )∗ ( s i n (2∗y ( 1 ) ) −
cos (2∗ beta 11 )∗ s i n (2∗y ( 1 ) ) ) +

2∗y (2)∗ b e t a 1 1 i ∗( s i n (2∗ beta 11 ) +

s i n (2∗ beta 11 )∗ cos (2∗y ( 1 ) ) ) +

( b e t a 1 1 i i ˆ2)∗ s i n (2∗ beta 11 )∗ cos (2∗y ( 1 ) ) −
(2∗ ( l i ˆ2)/( l ˆ2 ) )∗ ( s i n (2∗y ( 1 ) ) −
cos (2∗ beta 11 )∗ s i n (2∗y ( 1 ) ) ) − (2∗ l i i / l )∗ ( s i n (2∗y ( 1 ) ) −
cos (2∗ beta 11 )∗ s i n (2∗y ( 1 ) ) ) −
(4∗ g/ l )∗ cos ( beta 11 )∗ s i n ( y ( 1 ) ) ) / ( 3 + cos (2∗ beta 11 ) −
cos (2∗y ( 1 ) ) + cos (2∗ beta 11 )∗ cos (2∗y ( 1 ) ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

116


